File size: 2,138 Bytes
4320174 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from typing import Dict, List, Any
# import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
# from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoModel
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import pipeline, AutoTokenizer
# checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
checkpoint = "distilbert-base-uncased"
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
# model = ORTModelForSequenceClassification.from_pretrained(path)
# model = AutoModel.from_pretrained(checkpoint)
# model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
# tokenizer = AutoTokenizer.from_pretrained(path)
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=checkpoint)
model = DistilBertForSequenceClassification.from_pretrained(checkpoint)
tokenizer = DistilBertTokenizer.from_pretrained(checkpoint)
# create inference pipeline
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
prediction = self.pipeline(inputs, **parameters)
else:
prediction = self.pipeline(inputs)
# postprocess the prediction
return prediction
|