Dongfu Jiang
commited on
Commit
•
02971ea
1
Parent(s):
3f84fdc
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,330 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- openai/summarize_from_feedback
|
5 |
+
- openai/webgpt_comparisons
|
6 |
+
- Dahoas/instruct-synthetic-prompt-responses
|
7 |
+
- Anthropic/hh-rlhf
|
8 |
+
- lmsys/chatbot_arena_conversations
|
9 |
+
- openbmb/UltraFeedback
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
tags:
|
13 |
+
- reward_model
|
14 |
+
- reward-model
|
15 |
+
- RLHF
|
16 |
+
- evaluation
|
17 |
+
- llm
|
18 |
+
- instruction
|
19 |
+
- reranking
|
20 |
+
language:
|
21 |
+
- en
|
22 |
+
pipeline_tag: text-generation
|
23 |
---
|
24 |
+
|
25 |
+
**This is the hugging face compatible version of [llm-blender/PairRM](https://huggingface.co/llm-blender/PairRM)**, which can be loaded directly with:
|
26 |
+
```python
|
27 |
+
import os
|
28 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
29 |
+
from llm_blender.pair_ranker.pairrm import DebertaV2PairRM
|
30 |
+
from transformers import AutoTokenizer
|
31 |
+
from typing import List
|
32 |
+
pairrm = DebertaV2PairRM.from_pretrained("llm-blender/PairRM-hf", device_map="cuda:0")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained('llm-blender/PairRM-hf')
|
34 |
+
source_prefix = "<|source|>"
|
35 |
+
cand1_prefix = "<|candidate1|>"
|
36 |
+
cand2_prefix = "<|candidate2|>"
|
37 |
+
inputs = ["hello!", "I love you!"]
|
38 |
+
candidates_A = ["hi!", "I hate you!"]
|
39 |
+
candidates_B = ["f**k off!", "I love you, too!"]
|
40 |
+
def tokenize_pair(sources:List[str], candidate1s:List[str], candidate2s:List[str]):
|
41 |
+
ids = []
|
42 |
+
assert len(sources) == len(candidate1s) == len(candidate2s)
|
43 |
+
for i in range(len(sources)):
|
44 |
+
source_ids = tokenizer.encode(source_prefix + sources[i])
|
45 |
+
candidate1_ids = tokenizer.encode(cand1_prefix + candidate1s[i])
|
46 |
+
candidate2_ids = tokenizer.encode(cand2_prefix + candidate2s[i])
|
47 |
+
ids.append(source_ids + candidate1_ids + candidate2_ids)
|
48 |
+
encodings = tokenizer.pad({"input_ids": ids}, return_tensors="pt")
|
49 |
+
return encodings
|
50 |
+
|
51 |
+
encodings = tokenize_pair(inputs, candidates_A, candidates_B)
|
52 |
+
encodings = {k:v.to(pairrm.device) for k,v in encodings.items()}
|
53 |
+
outputs = pairrm(**encodings)
|
54 |
+
logits = outputs.logits.tolist()
|
55 |
+
comparison_results = outputs.logits > 0
|
56 |
+
print(logits)
|
57 |
+
# [1.9003021717071533, -1.2547134160995483]
|
58 |
+
print(comparison_results)
|
59 |
+
# tensor([ True, False], device='cuda:0'), which means whether candidate A is better than candidate B for each input
|
60 |
+
```
|
61 |
+
|
62 |
+
The above code produces exactly the same results with the following code using original llm-blender wrapper:
|
63 |
+
```python
|
64 |
+
import os
|
65 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
66 |
+
import llm_blender
|
67 |
+
blender = llm_blender.Blender()
|
68 |
+
# Load Ranker
|
69 |
+
blender.loadranker("llm-blender/PairRM") # load ranker checkpoint
|
70 |
+
inputs = ["hello!", "I love you!"]
|
71 |
+
candidates_A = ["hi!", "I hate you!"]
|
72 |
+
candidates_B = ["f**k off!", "I love you, too!"]
|
73 |
+
logits = blender.compare(inputs, candidates_A, candidates_B, return_logits=True, mode="[A,B]")
|
74 |
+
comparison_results = logits > 0
|
75 |
+
print(logits)
|
76 |
+
# [ 1.9 -1.255]
|
77 |
+
print(comparison_results)
|
78 |
+
# tensor([ True, False], device='cuda:0'), which means whether candidate A is better than candidate B for each input
|
79 |
+
```
|
80 |
+
|
81 |
+
# Pairwise Reward Model for LLMs (PairRM) from LLM-Blender
|
82 |
+
|
83 |
+
|
84 |
+
- Github: [https://github.com/yuchenlin/LLM-Blender](https://github.com/yuchenlin/LLM-Blender)
|
85 |
+
- Paper: [https://arxiv.org/abs/2306.02561](https://arxiv.org/abs/2306.02561)
|
86 |
+
- Space Demo: [https://huggingface.co/spaces/llm-blender/LLM-Blender](https://huggingface.co/spaces/llm-blender/LLM-Blender)
|
87 |
+
|
88 |
+
|
89 |
+
## Introduction
|
90 |
+
|
91 |
+
Pairwise Reward Model (PairRM) takes an instruction and a **pair** of output candidates as the input,
|
92 |
+
and output a score for each candidate to measure their **relative** quality.
|
93 |
+
PairRM can be used to (re-)rank a list of candidate outputs and thus can be used an LLM evaluator to efficiently assess the quality of LLMs in local environment.
|
94 |
+
PairRM can also be used to enhance the decoding by `best-of-n sampling` (i.e., reranking N sampled outputs).
|
95 |
+
Apart from that, one can also use PairRM to further align instruction-tuned LLMs with RLHF methods.
|
96 |
+
|
97 |
+
Unlike the other RMs that encode and score each candidate respectively,
|
98 |
+
PairRM takes a pair of candidates and compares them side-by-side to indentify the subtle differences between them.
|
99 |
+
Also, PairRM is based on [`microsoft/deberta-v3-large`](https://huggingface.co/microsoft/deberta-v3-large), and thus it is super efficient: **0.4B**.
|
100 |
+
We trained PairRM on a diverse collection of six human-preference datasets (see more [here](https://huggingface.co/llm-blender/PairRM#training-datasets)).
|
101 |
+
|
102 |
+
PairRM is part of the LLM-Blender project (ACL 2023). Please see our [paper](https://arxiv.org/abs/2306.02561) above to know more.
|
103 |
+
|
104 |
+
|
105 |
+
## Installation
|
106 |
+
|
107 |
+
- First install `llm-blender`
|
108 |
+
```bash
|
109 |
+
pip install git+https://github.com/yuchenlin/LLM-Blender.git
|
110 |
+
```
|
111 |
+
|
112 |
+
- Then load PairRM:
|
113 |
+
```python
|
114 |
+
import llm_blender
|
115 |
+
blender = llm_blender.Blender()
|
116 |
+
blender.loadranker("llm-blender/PairRM") # load PairRM
|
117 |
+
```
|
118 |
+
|
119 |
+
|
120 |
+
## Usage
|
121 |
+
|
122 |
+
### Use Case 1: Comparing/Ranking output candidates given an instruction
|
123 |
+
|
124 |
+
- Ranking a list candidate responses
|
125 |
+
|
126 |
+
```python
|
127 |
+
inputs = ["hello, how are you!", "I love you!"]
|
128 |
+
candidates_texts = [["get out!", "hi! I am fine, thanks!", "bye!"],
|
129 |
+
["I love you too!", "I hate you!", "Thanks! You're a good guy!"]]
|
130 |
+
ranks = blender.rank(inputs, candidates_texts, return_scores=False, batch_size=1)
|
131 |
+
# ranks is a list of ranks
|
132 |
+
# ranks[i][j] represents the ranks of candidate-j for input-i
|
133 |
+
"""
|
134 |
+
ranks -->
|
135 |
+
array([[3, 1, 2], # it means "hi! I am fine, thanks!" ranks the 1st, "bye" ranks the 2nd, and "get out!" ranks the 3rd.
|
136 |
+
[1, 3, 2]], # it means "I love you too"! ranks the the 1st, and "I hate you!" ranks the 3rd.
|
137 |
+
dtype=int32)
|
138 |
+
|
139 |
+
"""
|
140 |
+
```
|
141 |
+
|
142 |
+
- Directly comparing two candidate responses
|
143 |
+
```python
|
144 |
+
inputs = ["hello!", "I love you!"]
|
145 |
+
candidates_A = ["hi!", "I hate you!"]
|
146 |
+
candidates_B = ["f**k off!", "I love you, too!"]
|
147 |
+
comparison_results = blender.compare(inputs, candidates_A, candidates_B)
|
148 |
+
# comparison_results is a list of bool, where comparison_results[i] denotes
|
149 |
+
# whether candidates_A[i] is better than candidates_B[i] for inputs[i]
|
150 |
+
# Example: comparison_results[0]--> True
|
151 |
+
```
|
152 |
+
|
153 |
+
<details><summary> Comparing two multi-turn conversations. </summary>
|
154 |
+
|
155 |
+
```python
|
156 |
+
conv1 = [
|
157 |
+
{
|
158 |
+
"content": "hello",
|
159 |
+
"role": "USER"
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"content": "[assistant1‘s response 1]",
|
163 |
+
"role": "ASSISTANT"
|
164 |
+
},
|
165 |
+
...
|
166 |
+
]
|
167 |
+
conv2 = [
|
168 |
+
{
|
169 |
+
"content": "hello",
|
170 |
+
"role": "USER"
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"content": "[assistant2's response 1]",
|
174 |
+
"role": "ASSISTANT"
|
175 |
+
},
|
176 |
+
...
|
177 |
+
]
|
178 |
+
comparison_results = blender.compare_conversations([conv1], [conv2])
|
179 |
+
# comparison_results is a list of bool, where each element denotes whether all the responses in conv1 together is better than that of conv2
|
180 |
+
```
|
181 |
+
</details>
|
182 |
+
|
183 |
+
|
184 |
+
### Use Case 2: Best-of-n Sampling (Decoding Enhancment)
|
185 |
+
|
186 |
+
**Best-of-n Sampling**, aka, rejection sampling, is a strategy to enhance the response quality by selecting the one that was ranked highest by the reward model
|
187 |
+
(see more in [OpenAI WebGPT section 3.2](https://arxiv.org/pdf/2112.09332.pdf) and [OpenAI Blog](https://openai.com/research/measuring-goodharts-law)).
|
188 |
+
Best-of-n sampling with PairRM is a very easy way to imporve your LLMs with only a few changes of your inference code:
|
189 |
+
|
190 |
+
```python
|
191 |
+
# loading models
|
192 |
+
import llm_blender
|
193 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
194 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
195 |
+
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
|
196 |
+
system_message = {"role": "system", "content": "You are a friendly chatbot."}
|
197 |
+
|
198 |
+
# formatting your inputs
|
199 |
+
inputs = ["can you tell me a joke about OpenAI?"]
|
200 |
+
messages = [[system_message, {"role": "user", "content": _input}] for _input in inputs]
|
201 |
+
prompts = [tokenizer.apply_chat_template(m, tokenize=False, add_generation_prompt=True) for m in messages]
|
202 |
+
|
203 |
+
# Conventional generation method
|
204 |
+
input_ids = tokenizer(prompts[0], return_tensors="pt").input_ids
|
205 |
+
sampled_outputs = model.generate(input_ids, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
206 |
+
print(tokenizer.decode(sampled_outputs[0][len(input_ids[0]):], skip_special_tokens=False))
|
207 |
+
# --> The output could be a bad case such as a very short one, e.g., `Sure`
|
208 |
+
|
209 |
+
# PairRM for best-of-n sampling
|
210 |
+
blender = llm_blender.Blender()
|
211 |
+
blender.loadranker("llm-blender/PairRM") # load ranker checkpoint
|
212 |
+
outputs = blender.best_of_n_generate(model, tokenizer, prompts, n=10)
|
213 |
+
|
214 |
+
print("### Prompt:\n", prompts[0])
|
215 |
+
print("### best-of-n generations:\n", outputs[0])
|
216 |
+
# --> The output will be much more stable and consistently better than single sampling, for example:
|
217 |
+
"""
|
218 |
+
Sure, here's a joke about OpenAI:
|
219 |
+
|
220 |
+
Why did OpenAI decide to hire a mime as their new AI researcher?
|
221 |
+
|
222 |
+
Because they wanted someone who could communicate complex ideas without making a sound!
|
223 |
+
|
224 |
+
(Note: This is a joke, not a reflection of OpenAI's actual hiring practices.)
|
225 |
+
"""
|
226 |
+
```
|
227 |
+
|
228 |
+
### Use case 3: RLHF
|
229 |
+
PairRM has been trained on various high-quality and large-scale datasets with human preference annotations
|
230 |
+
and shown great correlation with human preferences with an extremely small model size (0.4B),
|
231 |
+
approching the performance of GPT-4.
|
232 |
+
PairRM will better help the future alignment of LLMs in a more efficient and effective way.
|
233 |
+
With a `blender.compare()` function, you can apply PairRM to popular RLHF toolkits such as [trl](https://huggingface.co/docs/trl/index).
|
234 |
+
|
235 |
+
**🔥 Check more details on our example jupyter notebook usage: [`blender_usage.ipynb`](https://github.com/yuchenlin/LLM-Blender/blob/main/blender_usage.ipynb)**
|
236 |
+
|
237 |
+
|
238 |
+
Learn more in our LLM-Blender Github [README.md](https://github.com/yuchenlin/LLM-Blender#rank-and-fusion)
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
## Statistics
|
244 |
+
|
245 |
+
### Context length
|
246 |
+
| PairRanker type | Source max length | Candidate max length | Total max length |
|
247 |
+
|:-----------------:|:-----------------:|----------------------|------------------|
|
248 |
+
| [pair-ranker](https://huggingface.co/llm-blender/pair-ranker) (our previous version) | 128 | 128 | 384 |
|
249 |
+
| [PairRM](https://huggingface.co/llm-blender/pair-reward-model/) (This model) | 1224 | 412 | 2048 |
|
250 |
+
|
251 |
+
### Training Datasets
|
252 |
+
- [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
|
253 |
+
- [openai/webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
|
254 |
+
- [Dahoas/instruct-synthetic-prompt-responses](https://huggingface.co/datasets/Dahoas/instruct-synthetic-prompt-responses)
|
255 |
+
- [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
256 |
+
- [lmsys/chatbot_arena_conversations](https://huggingface.co/datasets/lmsys/chatbot_arena_conversations)
|
257 |
+
- [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback)
|
258 |
+
|
259 |
+
### Performance
|
260 |
+
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences
|
261 |
+
with an extremly small model size (0.4B), approching the performance of GPT-4.
|
262 |
+
|
263 |
+
We test the pairwise comparison on
|
264 |
+
- [Auto-J pairwise testdata](https://github.com/GAIR-NLP/auto-j#pairwise-response-comparison)
|
265 |
+
- [HHH-alignment](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment)
|
266 |
+
- [MT-bench-human-judgements](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)
|
267 |
+
|
268 |
+
All following results are reported as pairwise comparison accuracies (agreements).
|
269 |
+
|
270 |
+
#### Auto-J Pairwise test data performance
|
271 |
+
|
272 |
+
| Model | Summ | Exam | Code | Rewriting | Crea W | Func W | Comm | NLP | Overall |
|
273 |
+
|:---------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-----:|:--------:|:---------:|
|
274 |
+
| Closed -source Models |
|
275 |
+
| ChatGPT | 33.3 | 40.3 | 36.6 | 31.6 | 48.2 | 40.4 | 47.6 | 45.8 | 42.7 |
|
276 |
+
| Claude -2 | 30.6 | 36.1 | 41.7 | 34.2 | 48.1 | 42.5 | 40.6 | 48.5 | 42.4 |
|
277 |
+
| GPT -4 | 59.7 | 51.4 | 69.2 | 58.3 | 66.7 | 60.4 | 58.3 | 65.2 | 61.9 |
|
278 |
+
| Open -source Models |
|
279 |
+
| SteamSHP | 33.3 | 29.2 | 26.7 | 33.3 | 40.7 | 31.3 | 51.4 | 51.9 | 40.6 |
|
280 |
+
| PandaLM | 29.2 | 33.3 | 31.7 | 23.3 | 43.5 | 32.9 | 44.8 | 48.9 | 38.9 |
|
281 |
+
| LLaMA -2-Chat -13B | 20.8 | 27.8 | 19.2 | 20 | 31.5 | 27.5 | 35.8 | 31.8 | 29 |
|
282 |
+
| Vicuna -13B-v1.5 | 30.6 | 23.6 | 35 | 28.3 | 36.1 | 37.5 | 45.5 | 39.8 | 37.3 |
|
283 |
+
| WizardLM -13B-v1.2 | 22.2 | 20.8 | 32.5 | 19.2 | 28.7 | 25.4 | 29.2 | 33 | 27.8 |
|
284 |
+
| LLAMA -2-chat -70B | 34.7 | 33.3 | 36.7 | 35.8 | 51.4 | 54.2 | 47.2 | 47.7 | 45.9 |
|
285 |
+
| AUTO -J (13b) | 45.8 | 38.9 | **59.2** | 47.5 | 54.6 | 57.1 | **58** | 57.6 | 54.8 |
|
286 |
+
| UltraRM (13b) | 56.94 | 43.06 | 55.0 | 53.33 | **67.13** | **64.17** | 56.25 | 59.85 | **59.85** |
|
287 |
+
| **PairRM (0.4b)** | **56.94** | **52.78** | 58.33 | **55.83** | 61.57 | 59.17 | 57.64 | **62.5** | 59.05 |
|
288 |
+
|
289 |
+
#### HHH-Alignment and MT-bench human judgements
|
290 |
+
|
291 |
+
| Evaluator LM | HHH ALIGNMENT | | | | | MT BENCH HUMAN JUDG . |
|
292 |
+
|:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|:---------------------:|
|
293 |
+
| | Help . | Harm . | Hon . | Other | Total Avg . | Human Preference |
|
294 |
+
| RANDOM | 50 | 50 | 50 | 50 | 50 | 34.26 |
|
295 |
+
| STANFORDNLP REWARD MODEL | 69.49 | 60.34 | 52.46 | 51.16 | 58.82 | 44.79 |
|
296 |
+
| ALMOST REWARD MODEL | 74.58 | 67.24 | 78.69 | 86.05 | 76.02 | 49.9 |
|
297 |
+
| LLAMA2 -CHAT 7B | 66.1 | 81.03 | 70.49 | 74.42 | 72.85 | 51.78 |
|
298 |
+
| LLAMA2 -CHAT 13B | 74.58 | 87.93 | 55.74 | 79.07 | 73.76 | 52.34 |
|
299 |
+
| LLAMA2 -CHAT 70B | 66.1 | **89.66** | 67.21 | 74.42 | 74.21 | 53.67 |
|
300 |
+
| LLAMA2 -CHAT 13B+COARSE . | 68.74 | 68.97 | 65.57 | 67.44 | 67.42 | 46.89 |
|
301 |
+
| GPT -3.5-TURBO -0613 | 76.27 | 87.93 | 67.21 | 86.05 | 78.73 | 57.12 |
|
302 |
+
| PROMETHEUS 7B | 69.49 | 84.48 | 78.69 | 90.7 | 80.09 | 55.14 |
|
303 |
+
| PROMETHEUS 13B | 81.36 | 82.76 | 75.41 | 76.74 | 79.19 | 57.72 |
|
304 |
+
| UltraRM (13B) | **86.44** | 79.31 | **81.97** | 88.37 | 83.71 | 56 |
|
305 |
+
| **PairRM (0.4B)** | 84.75 | 84.48 | 80.33 | **90.7** | **84.62** | **59** |
|
306 |
+
| GPT -4-0613 | 91.53 | 93.1 | 85.25 | 83.72 | 88.69 | 63.87 |
|
307 |
+
|
308 |
+
**While PairRM is a extremely small model (0.4B) based on deberta, the pairwise comparison aggrement performance approches GPT-4's performance!**
|
309 |
+
|
310 |
+
Two reasons to attribute:
|
311 |
+
- Our PairRM specically designed model arch for pairwise comparison through bidirectional attention (See LLM-blender paper for more details)
|
312 |
+
- The high-quality and large-scale human preference annotation data it was train on (see training dataset list on this hugging face page)
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
## Citation & Credits
|
320 |
+
If you are using PairRM in your research, please cite LLM-blender.
|
321 |
+
```bibtex
|
322 |
+
@inproceedings{llm-blender-2023,
|
323 |
+
title = "LLM-Blender: Ensembling Large Language Models with Pairwise Comparison and Generative Fusion",
|
324 |
+
author = "Jiang, Dongfu and Ren, Xiang and Lin, Bill Yuchen",
|
325 |
+
booktitle = "Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023)",
|
326 |
+
year = "2023"
|
327 |
+
}
|
328 |
+
|
329 |
+
```
|
330 |
+
|