File size: 2,108 Bytes
22e3222
 
 
 
8d12e5b
 
 
 
22e3222
 
a6ad044
22e3222
 
8d12e5b
 
22e3222
 
 
 
 
 
 
 
a6ad044
22e3222
 
8d12e5b
22e3222
a6ad044
22e3222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ad044
22e3222
 
 
 
 
 
a6ad044
 
22e3222
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: HuggingFaceTB/SmolLM-360M
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceTB/everyday-topics-MT-conversations-H4
- HuggingFaceTB/instruct-data-basics-H4
model-index:
- name: smollm-350M-instruct-add-basics-only
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/loubnabnl/huggingface/runs/6sdxeci4)
# smollm-350M-instruct-add-basics-only

This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M](https://huggingface.co/HuggingFaceTB/SmolLM-360M) on the HuggingFaceTB/everyday-topics-MT-conversations-H4 and the HuggingFaceTB/instruct-data-basics-H4 datasets.
It achieves the following results on the evaluation set:
- Loss: 1.4730

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2577        | 0.5714 | 1    | 2.2421          |
| 2.2317        | 1.7143 | 3    | 2.2371          |
| 2.8729        | 2.8571 | 5    | 1.4730          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1