GOT-OCR2_0 / modeling_GOT.py
Praveen Malla
initial push
c680bdc
from transformers import (
Qwen2Config,
Qwen2Model,
Qwen2ForCausalLM,
StoppingCriteria,
TextStreamer,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from typing import List, Optional, Tuple, Union
from transformers.cache_utils import Cache
import requests
from PIL import Image
from io import BytesIO
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from .got_vision_b import build_GOT_vit_b
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import dataclasses
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<imgpad>"
DEFAULT_IM_START_TOKEN = "<img>"
DEFAULT_IM_END_TOKEN = "</img>"
from enum import auto, Enum
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "<|im_end|>"
sep2: str = None
version: str = "Unknown"
skip_next: bool = False
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep + "\n"
for role, message in self.messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
if self.sep_style == SeparatorStyle.MPT:
if self.system:
ret = self.system + self.sep
else:
ret = ""
for role, message in self.messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + message + self.sep
else:
ret += role
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
)
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
self.keyword_ids = [
keyword_id[0]
for keyword_id in self.keyword_ids
if type(keyword_id) is list and len(keyword_id) == 1
]
self.tokenizer = tokenizer
self.start_len = None
self.input_ids = input_ids
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
if self.start_len is None:
self.start_len = self.input_ids.shape[1]
else:
for keyword_id in self.keyword_ids:
if output_ids[0, -1] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(
output_ids[:, self.start_len :], skip_special_tokens=True
)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
class GOTImageEvalProcessor:
def __init__(self, image_size=384, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean, std)
self.transform = transforms.Compose(
[
transforms.Resize(
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
class GOTConfig(Qwen2Config):
model_type = "GOT"
class GOTQwenModel(Qwen2Model):
config_class = GOTConfig
def __init__(self, config: Qwen2Config):
super(GOTQwenModel, self).__init__(config)
self.vision_tower_high = build_GOT_vit_b()
self.mm_projector_vary = nn.Linear(1024, 1024)
def initialize_vision_modules(
self,
vision_tower,
pretrained_stage1_model=None,
freeze_vision_tower=False,
use_im_start_end=False,
vision_select_layer=-1,
dtype=torch.float16,
device="cpu",
):
image_processor_high = GOTImageEvalProcessor(image_size=1024)
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
image_token_len = 256
self.config.vision_tower = vision_tower
self.config.image_token_len = image_token_len
self.config.use_im_start_end = True
self.config.vision_select_layer = vision_select_layer
self.config.freeze_vision_tower = freeze_vision_tower
return dict(
image_processor_high=image_processor_high,
image_token_len=image_token_len,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, "orig_embeds_params", None)
if orig_embeds_params is not None:
with torch.no_grad():
self.get_input_embeddings().weight[: -self.num_new_tokens] = (
orig_embeds_params[: -self.num_new_tokens].data
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
vision_tower_high = getattr(self, "vision_tower_high", None)
if (
vision_tower_high is not None
and (input_ids.shape[1] != 1 or self.training)
and images is not None
):
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
im_patch_token = getattr(self.config, "im_patch_token", -1)
im_start_token = getattr(self.config, "im_start_token", -1)
im_end_token = getattr(self.config, "im_end_token", -1)
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
im_patch_token = 151859
im_start_token = 151857
im_end_token = 151858
image_features = []
for image in images:
P, C, H, W = image.shape
if P == 1:
with torch.set_grad_enabled(False):
cnn_feature = vision_tower_high(image)
cnn_feature = cnn_feature.flatten(2).permute(
0, 2, 1
) # 256*1024
image_feature = self.mm_projector_vary(cnn_feature)
image_features.append(image_feature)
else:
image_patches = torch.unbind(image)
image_patches_features = []
for image_patch in image_patches:
image_p = torch.stack([image_patch])
with torch.set_grad_enabled(False):
cnn_feature_p = vision_tower_high(image_p)
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
image_feature_p = self.mm_projector_vary(cnn_feature_p)
image_patches_features.append(image_feature_p)
image_feature = torch.cat(image_patches_features, dim=1)
image_features.append(image_feature)
dummy_image_features_2 = torch.zeros(
256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
dummy_image_features = dummy_image_features_2
use_im_start_end = True
new_input_embeds = []
for cur_input_ids, cur_input_embeds, cur_image_features in zip(
input_ids, inputs_embeds, image_features
):
if (cur_input_ids == im_patch_token).sum() == 0:
cur_input_embeds = (
cur_input_embeds + (0.0 * dummy_image_features).sum()
)
new_input_embeds.append(cur_input_embeds)
continue
if use_im_start_end:
if (cur_input_ids == im_start_token).sum() != (
cur_input_ids == im_end_token
).sum():
raise ValueError(
"The number of image start tokens and image end tokens should be the same."
)
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
for image_start_token_pos, per_cur_image_features in zip(
image_start_tokens, cur_image_features
):
per_cur_image_features = per_cur_image_features.to(
device=cur_input_embeds.device
)
num_patches = per_cur_image_features.shape[0]
if (
cur_input_ids[image_start_token_pos + num_patches + 1]
!= im_end_token
):
raise ValueError(
"The image end token should follow the image start token."
)
cur_input_embeds = torch.cat(
(
cur_input_embeds[: image_start_token_pos + 1],
per_cur_image_features,
cur_input_embeds[
image_start_token_pos + num_patches + 1 :
],
),
dim=0,
)
new_input_embeds.append(cur_input_embeds)
else:
raise NotImplementedError
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return super(GOTQwenModel, self).forward(
input_ids=None,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class GOTQwenForCausalLM(Qwen2ForCausalLM):
config_class = GOTConfig
# supports_gradient_checkpointing = True
def __init__(self, config):
super(Qwen2ForCausalLM, self).__init__(config)
self.model = GOTQwenModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
images=images,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
# logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
# Omit tokens covered by past_key_values
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def initialize_vision_tokenizer(
self,
tokenizer,
freeze_lm_model=False,
pretrained_stage1_model=None,
device="cpu",
):
config = self.get_model().config
self.resize_token_embeddings(len(tokenizer))
config.im_patch_token = 151859
config.use_im_start_end = True
if config.use_im_start_end:
self.resize_token_embeddings(len(tokenizer))
config.im_start_token, config.im_end_token = 151857, 151858
def load_image(self, image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def disable_torch_init(self):
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def chat(
self,
tokenizer,
image_file,
ocr_type,
ocr_box="",
ocr_color="",
render=False,
save_render_file=None,
print_prompt=False,
gradio_input=False,
stream_flag=False,
):
self.disable_torch_init()
image_processor_high = GOTImageEvalProcessor(image_size=1024)
use_im_start_end = True
image_token_len = 256
if gradio_input:
image = image_file.copy()
else:
image = self.load_image(image_file)
w, h = image.size
if ocr_type == "format":
qs = "OCR with format: "
else:
qs = "OCR: "
if ocr_box:
bbox = eval(ocr_box)
if len(bbox) == 2:
bbox[0] = int(bbox[0] / w * 1000)
bbox[1] = int(bbox[1] / h * 1000)
if len(bbox) == 4:
bbox[0] = int(bbox[0] / w * 1000)
bbox[1] = int(bbox[1] / h * 1000)
bbox[2] = int(bbox[2] / w * 1000)
bbox[3] = int(bbox[3] / h * 1000)
if ocr_type == "format":
qs = str(bbox) + " " + "OCR with format: "
else:
qs = str(bbox) + " " + "OCR: "
if ocr_color:
if ocr_type == "format":
qs = "[" + ocr_color + "]" + " " + "OCR with format: "
else:
qs = "[" + ocr_color + "]" + " " + "OCR: "
if use_im_start_end:
qs = (
DEFAULT_IM_START_TOKEN
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
+ DEFAULT_IM_END_TOKEN
+ "\n"
+ qs
)
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv_mpt = Conversation(
system="""<|im_start|>system
You should follow the instructions carefully and explain your answers in detail.""",
# system = None,
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
conv = conv_mpt.copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if print_prompt:
print(prompt)
inputs = tokenizer([prompt])
image_tensor_1 = image_processor_high(image)
input_ids = torch.as_tensor(inputs.input_ids).cpu()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
if stream_flag:
with torch.autocast("cpu", dtype=torch.bfloat16):
output_ids = self.generate(
input_ids,
images=[image_tensor_1.unsqueeze(0).half().cpu()],
do_sample=False,
num_beams=1,
no_repeat_ngram_size=20,
streamer=streamer,
max_new_tokens=4096,
stopping_criteria=[stopping_criteria],
)
else:
with torch.autocast("cpu", dtype=torch.bfloat16):
output_ids = self.generate(
input_ids,
images=[image_tensor_1.unsqueeze(0).half().cpu()],
do_sample=False,
num_beams=1,
no_repeat_ngram_size=20,
# streamer=streamer,
max_new_tokens=4096,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
response_str = outputs
if render:
print("==============rendering===============")
from .render_tools import (
svg_to_html,
content_mmd_to_html,
tik_html,
translation_table,
)
if "**kern" in outputs:
import verovio
tk = verovio.toolkit()
tk.loadData(outputs)
tk.setOptions(
{
"pageWidth": 2100,
"footer": "none",
"barLineWidth": 0.5,
"beamMaxSlope": 15,
"staffLineWidth": 0.2,
"spacingStaff": 6,
}
)
tk.getPageCount()
svg = tk.renderToSVG()
svg = svg.replace('overflow="inherit"', 'overflow="visible"')
svg_to_html(svg, save_render_file)
if ocr_type == "format" and "**kern" not in outputs:
if "\\begin{tikzpicture}" not in outputs:
html_path_2 = save_render_file
right_num = outputs.count("\\right")
left_num = outputs.count("\left")
if right_num != left_num:
outputs = (
outputs.replace("\left(", "(")
.replace("\\right)", ")")
.replace("\left[", "[")
.replace("\\right]", "]")
.replace("\left{", "{")
.replace("\\right}", "}")
.replace("\left|", "|")
.replace("\\right|", "|")
.replace("\left.", ".")
.replace("\\right.", ".")
)
outputs = outputs.replace('"', "``").replace("$", "")
outputs_list = outputs.split("\n")
gt = ""
for out in outputs_list:
gt += '"' + out.replace("\\", "\\\\") + r"\n" + '"' + "+" + "\n"
gt = gt[:-2]
lines = content_mmd_to_html
lines = lines.split("const text =")
new_web = lines[0] + "const text =" + gt + lines[1]
else:
html_path_2 = save_render_file
outputs = outputs.translate(translation_table)
outputs_list = outputs.split("\n")
gt = ""
for out in outputs_list:
if out:
if (
"\\begin{tikzpicture}" not in out
and "\\end{tikzpicture}" not in out
):
while out[-1] == " ":
out = out[:-1]
if out is None:
break
if out:
if out[-1] != ";":
gt += out[:-1] + ";\n"
else:
gt += out + "\n"
else:
gt += out + "\n"
lines = tik_html
lines = lines.split("const text =")
new_web = lines[0] + gt + lines[1]
with open(html_path_2, "w") as web_f_new:
web_f_new.write(new_web)
return response_str
def dynamic_preprocess(
self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True
):
def find_closest_aspect_ratio(
aspect_ratio, target_ratios, width, height, image_size
):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
return best_ratio
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
# print(target_ratios)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# print(target_aspect_ratio)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def chat_crop(
self,
tokenizer,
image_file,
ocr_type,
render=False,
save_render_file=None,
print_prompt=False,
gradio_input=False,
stream_flag=False,
):
# Model
self.disable_torch_init()
multi_page = False
image_processor_high = GOTImageEvalProcessor(image_size=1024)
use_im_start_end = True
image_token_len = 256
image_list = []
# if len(image_file_list)>1:
# multi_page = True
if multi_page:
qs = "OCR with format across multi pages: "
# only for png files
# import glob
# from natsort import natsorted
# patches = glob.glob(image_file + '/*png')
patches = image_file
# patches = natsorted(patches)
sub_images = []
for sub_image in patches:
sub_images.append(self.load_image(sub_image))
ll = len(patches)
# print(patches)
# print("len ll: ", ll)
else:
if ocr_type == "format":
qs = "OCR with format upon the patch reference: "
else:
qs = "OCR upon the patch reference: "
if gradio_input:
img = image_file.copy()
else:
img = self.load_image(image_file)
sub_images = self.dynamic_preprocess(img)
ll = len(sub_images)
for image in sub_images:
image_tensor_1 = image_processor_high(image)
image_list.append(image_tensor_1)
image_list = torch.stack(image_list)
print("====new images batch size======: \n", image_list.shape)
if use_im_start_end:
qs = (
DEFAULT_IM_START_TOKEN
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * ll
+ DEFAULT_IM_END_TOKEN
+ "\n"
+ qs
)
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv_mpt = Conversation(
system="""<|im_start|>system
You should follow the instructions carefully and explain your answers in detail.""",
# system = None,
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
conv = conv_mpt.copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if print_prompt:
print(prompt)
inputs = tokenizer([prompt])
input_ids = torch.as_tensor(inputs.input_ids).cpu()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
if stream_flag:
with torch.autocast("cpu", dtype=torch.bfloat16):
output_ids = self.generate(
input_ids,
images=[image_list.half().cpu()],
do_sample=False,
num_beams=1,
# no_repeat_ngram_size = 20,
streamer=streamer,
max_new_tokens=4096,
stopping_criteria=[stopping_criteria],
)
else:
with torch.autocast("cpu", dtype=torch.bfloat16):
output_ids = self.generate(
input_ids,
images=[image_list.half().cpu()],
do_sample=False,
num_beams=1,
# no_repeat_ngram_size = 20,
# streamer=streamer,
max_new_tokens=4096,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
response_str = outputs
if render:
print("==============rendering===============")
from .render_tools import content_mmd_to_html
html_path_2 = save_render_file
right_num = outputs.count("\\right")
left_num = outputs.count("\left")
if right_num != left_num:
outputs = (
outputs.replace("\left(", "(")
.replace("\\right)", ")")
.replace("\left[", "[")
.replace("\\right]", "]")
.replace("\left{", "{")
.replace("\\right}", "}")
.replace("\left|", "|")
.replace("\\right|", "|")
.replace("\left.", ".")
.replace("\\right.", ".")
)
outputs = outputs.replace('"', "``").replace("$", "")
outputs_list = outputs.split("\n")
gt = ""
for out in outputs_list:
gt += '"' + out.replace("\\", "\\\\") + r"\n" + '"' + "+" + "\n"
gt = gt[:-2]
lines = content_mmd_to_html
lines = lines.split("const text =")
new_web = lines[0] + "const text =" + gt + lines[1]
with open(html_path_2, "w") as web_f_new:
web_f_new.write(new_web)
return response_str