|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch T5 model.""" |
|
|
|
|
|
import copy |
|
import math |
|
import os |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers import PretrainedConfig, add_start_docstrings, PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, \ |
|
_prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa |
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, \ |
|
Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, TokenClassifierOutput |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings_to_model_forward, is_torch_fx_proxy, \ |
|
logging, replace_return_docstrings, is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "T5Config" |
|
_CHECKPOINT_FOR_DOC = "google-t5/t5-small" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class T5Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to |
|
instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the T5 |
|
[google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Arguments: |
|
vocab_size (`int`, *optional*, defaults to 32128): |
|
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. |
|
d_model (`int`, *optional*, defaults to 512): |
|
Size of the encoder layers and the pooler layer. |
|
d_kv (`int`, *optional*, defaults to 64): |
|
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will |
|
be defined as `num_heads * d_kv`. |
|
d_ff (`int`, *optional*, defaults to 2048): |
|
Size of the intermediate feed forward layer in each `T5Block`. |
|
num_layers (`int`, *optional*, defaults to 6): |
|
Number of hidden layers in the Transformer encoder. |
|
num_decoder_layers (`int`, *optional*): |
|
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. |
|
num_heads (`int`, *optional*, defaults to 8): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
relative_attention_num_buckets (`int`, *optional*, defaults to 32): |
|
The number of buckets to use for each attention layer. |
|
relative_attention_max_distance (`int`, *optional*, defaults to 128): |
|
The maximum distance of the longer sequences for the bucket separation. |
|
dropout_rate (`float`, *optional*, defaults to 0.1): |
|
The ratio for all dropout layers. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
The epsilon used by the layer normalization layers. |
|
initializer_factor (`float`, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
feed_forward_proj (`string`, *optional*, defaults to `"relu"`): |
|
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the |
|
`"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
""" |
|
|
|
model_type = "t5" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32128, |
|
d_model=512, |
|
d_kv=64, |
|
d_ff=2048, |
|
num_layers=6, |
|
num_decoder_layers=None, |
|
num_heads=8, |
|
relative_attention_num_buckets=32, |
|
relative_attention_max_distance=128, |
|
dropout_rate=0.1, |
|
layer_norm_epsilon=1e-6, |
|
initializer_factor=1.0, |
|
feed_forward_proj="relu", |
|
is_encoder_decoder=True, |
|
use_cache=True, |
|
pad_token_id=0, |
|
eos_token_id=1, |
|
classifier_dropout=0.0, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
max_position_embeddings=1024, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.d_model = d_model |
|
self.d_kv = d_kv |
|
self.d_ff = d_ff |
|
self.num_layers = num_layers |
|
self.num_decoder_layers = ( |
|
num_decoder_layers if num_decoder_layers is not None else self.num_layers |
|
) |
|
self.num_heads = num_heads |
|
self.relative_attention_num_buckets = relative_attention_num_buckets |
|
self.relative_attention_max_distance = relative_attention_max_distance |
|
self.dropout_rate = dropout_rate |
|
self.classifier_dropout = classifier_dropout |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_factor = initializer_factor |
|
self.feed_forward_proj = feed_forward_proj |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling=rope_scaling |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
act_info = self.feed_forward_proj.split("-") |
|
self.dense_act_fn = act_info[-1] |
|
self.is_gated_act = act_info[0] == "gated" |
|
|
|
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: |
|
raise ValueError( |
|
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " |
|
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " |
|
"'gated-gelu' or 'relu'" |
|
) |
|
|
|
|
|
if feed_forward_proj == "gated-gelu": |
|
self.dense_act_fn = "gelu_new" |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
eos_token_id=eos_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
**kwargs, |
|
) |
|
def load_tf_weights_in_t5(model, config, tf_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model.""" |
|
try: |
|
import re |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
tf_weights = {} |
|
for name, shape in init_vars: |
|
logger.info(f"Loading TF weight {name} with shape {shape}") |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
tf_weights[name] = array |
|
|
|
for txt_name in names: |
|
name = txt_name.split("/") |
|
|
|
|
|
if any( |
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] |
|
for n in name |
|
): |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
tf_weights.pop(txt_name, None) |
|
continue |
|
if "_slot_" in name[-1]: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
tf_weights.pop(txt_name, None) |
|
continue |
|
pointer = model |
|
array = tf_weights[txt_name] |
|
|
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] in ["kernel", "scale", "embedding"]: |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "self_attention": |
|
pointer = getattr(pointer, "layer") |
|
pointer = pointer[0] |
|
elif scope_names[0] == "enc_dec_attention": |
|
pointer = getattr(pointer, "layer") |
|
pointer = pointer[1] |
|
elif scope_names[0] == "dense_relu_dense": |
|
pointer = getattr(pointer, "layer") |
|
pointer = pointer[2] |
|
elif scope_names[0] == "rms_norm": |
|
if hasattr(pointer, "layer_norm"): |
|
pointer = getattr(pointer, "layer_norm") |
|
elif hasattr(pointer, "final_layer_norm"): |
|
pointer = getattr(pointer, "final_layer_norm") |
|
elif scope_names[0] == "scale": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
elif scope_names[0] == "decoder" and name[1] == "logits": |
|
continue |
|
elif scope_names[0] == "logits": |
|
pointer = getattr(pointer, "lm_head") |
|
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): |
|
pointer = getattr(pointer, f"wi_{scope_names[1]}") |
|
continue |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if scope_names[0] not in ["kernel", "scale", "embedding"]: |
|
pointer = getattr(pointer, "weight") |
|
if scope_names[0] != "embedding": |
|
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") |
|
array = np.transpose(array) |
|
try: |
|
if pointer.shape != array.shape: |
|
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info(f"Initialize PyTorch weight {name}") |
|
pointer.data = torch.from_numpy(array.astype(np.float32)) |
|
tf_weights.pop(txt_name, None) |
|
|
|
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PARALLELIZE_DOCSTRING = r""" |
|
This is an experimental feature and is a subject to change at a moment's notice. |
|
|
|
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, |
|
it will evenly distribute blocks across all devices. |
|
|
|
Args: |
|
device_map (`Dict[int, list]`, optional, defaults to None): |
|
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always |
|
automatically mapped to the first device (for esoteric reasons). That means that the first device should |
|
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the |
|
following number of attention modules: |
|
|
|
- google-t5/t5-small: 6 |
|
- google-t5/t5-base: 12 |
|
- google-t5/t5-large: 24 |
|
- google-t5/t5-3b: 24 |
|
- google-t5/t5-11b: 24 |
|
|
|
Example: |
|
|
|
```python |
|
# Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules: |
|
model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") |
|
device_map = { |
|
0: [0, 1, 2], |
|
1: [3, 4, 5, 6, 7, 8, 9], |
|
2: [10, 11, 12, 13, 14, 15, 16], |
|
3: [17, 18, 19, 20, 21, 22, 23], |
|
} |
|
model.parallelize(device_map) |
|
``` |
|
""" |
|
DEPARALLELIZE_DOCSTRING = r""" |
|
Moves the model to cpu from a model parallel state. |
|
|
|
Example: |
|
|
|
```python |
|
# On a 4 GPU machine with google-t5/t5-3b: |
|
model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") |
|
device_map = { |
|
0: [0, 1, 2], |
|
1: [3, 4, 5, 6, 7, 8, 9], |
|
2: [10, 11, 12, 13, 14, 15, 16], |
|
3: [17, 18, 19, 20, 21, 22, 23], |
|
} |
|
model.parallelize(device_map) # Splits the model across several devices |
|
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() |
|
``` |
|
""" |
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
class T5LayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Construct a layernorm module in the T5 style. No bias and no subtraction of mean. |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
|
|
|
|
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
try: |
|
from apex.normalization import FusedRMSNorm |
|
|
|
T5LayerNorm = FusedRMSNorm |
|
|
|
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") |
|
except ImportError: |
|
|
|
pass |
|
except Exception: |
|
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") |
|
pass |
|
|
|
ALL_LAYERNORM_LAYERS.append(T5LayerNorm) |
|
|
|
|
|
class T5DenseActDense(nn.Module): |
|
def __init__(self, config: T5Config): |
|
super().__init__() |
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.act = ACT2FN[config.dense_act_fn] |
|
|
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.wi(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
if ( |
|
isinstance(self.wo.weight, torch.Tensor) |
|
and hidden_states.dtype != self.wo.weight.dtype |
|
and self.wo.weight.dtype != torch.int8 |
|
): |
|
hidden_states = hidden_states.to(self.wo.weight.dtype) |
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5DenseGatedActDense(nn.Module): |
|
def __init__(self, config: T5Config): |
|
super().__init__() |
|
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.act = ACT2FN[config.dense_act_fn] |
|
|
|
def forward(self, hidden_states): |
|
hidden_gelu = self.act(self.wi_0(hidden_states)) |
|
hidden_linear = self.wi_1(hidden_states) |
|
hidden_states = hidden_gelu * hidden_linear |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
|
|
|
|
if ( |
|
isinstance(self.wo.weight, torch.Tensor) |
|
and hidden_states.dtype != self.wo.weight.dtype |
|
and self.wo.weight.dtype != torch.int8 |
|
): |
|
hidden_states = hidden_states.to(self.wo.weight.dtype) |
|
|
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5LayerFF(nn.Module): |
|
def __init__(self, config: T5Config): |
|
super().__init__() |
|
if config.is_gated_act: |
|
self.DenseReluDense = T5DenseGatedActDense(config) |
|
else: |
|
self.DenseReluDense = T5DenseActDense(config) |
|
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states): |
|
forwarded_states = self.layer_norm(hidden_states) |
|
forwarded_states = self.DenseReluDense(forwarded_states) |
|
hidden_states = hidden_states + self.dropout(forwarded_states) |
|
return hidden_states |
|
|
|
class T5RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class T5LinearScalingRotaryEmbedding(T5RotaryEmbedding): |
|
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class T5DynamicNTKScalingRotaryEmbedding(T5RotaryEmbedding): |
|
|
|
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def rotate_half(x): |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
|
|
q_cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
q_sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * q_cos) + (rotate_half(q) * q_sin) |
|
if k.shape[-2] != q.shape[-2]: |
|
k_position_ids = torch.arange(k.shape[-2], device=k.device).unsqueeze(0) |
|
k_cos = cos[k_position_ids].unsqueeze(unsqueeze_dim) |
|
k_sin = sin[k_position_ids].unsqueeze(unsqueeze_dim) |
|
k_embed = (k * k_cos) + (rotate_half(k) * k_sin) |
|
else: |
|
k_embed = (k * q_cos) + (rotate_half(k) * q_sin) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
class T5Attention(nn.Module): |
|
def __init__(self, config: T5Config, has_relative_attention_bias=False, is_causal=False): |
|
super().__init__() |
|
self.config=config |
|
self.is_decoder = config.is_decoder |
|
self.has_relative_attention_bias = False |
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets |
|
self.relative_attention_max_distance = config.relative_attention_max_distance |
|
self.d_model = config.d_model |
|
self.key_value_proj_dim = config.d_kv |
|
self.n_heads = config.num_heads |
|
self.dropout = config.dropout_rate |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = is_causal |
|
|
|
|
|
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) |
|
|
|
|
|
self.pruned_heads = set() |
|
self.gradient_checkpointing = False |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = T5RotaryEmbedding( |
|
self.key_value_proj_dim, |
|
max_position_embeddings=self.config.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = T5LinearScalingRotaryEmbedding( |
|
self.attention_head_size, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = T5DynamicNTKScalingRotaryEmbedding( |
|
self.attention_head_size, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.q = prune_linear_layer(self.q, index) |
|
self.k = prune_linear_layer(self.k, index) |
|
self.v = prune_linear_layer(self.v, index) |
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): |
|
""" |
|
Adapted from Mesh Tensorflow: |
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 |
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as |
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to |
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for |
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative |
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. |
|
This should allow for more graceful generalization to longer sequences than the model has been trained on |
|
|
|
Args: |
|
relative_position: an int32 Tensor |
|
bidirectional: a boolean - whether the attention is bidirectional |
|
num_buckets: an integer |
|
max_distance: an integer |
|
|
|
Returns: |
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) |
|
""" |
|
relative_buckets = 0 |
|
if bidirectional: |
|
num_buckets //= 2 |
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
else: |
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) |
|
|
|
|
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
|
|
|
|
relative_position_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_position_if_large = torch.min( |
|
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length, device=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
|
|
|
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
kv_seq_len = key_states.shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, seq_length)) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_bias) |
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
|
|
|
|
|
|
if mask is not None: |
|
|
|
scores += mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( |
|
scores |
|
) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.dropout, training=self.training |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_weights,) |
|
return outputs |
|
|
|
class T5FlashAttention2(T5Attention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = T5RotaryEmbedding( |
|
self.key_value_proj_dim, |
|
max_position_embeddings=self.config.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = T5LinearScalingRotaryEmbedding( |
|
self.attention_head_size, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = T5DynamicNTKScalingRotaryEmbedding( |
|
self.attention_head_size, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.q = prune_linear_layer(self.q, index) |
|
self.k = prune_linear_layer(self.k, index) |
|
self.v = prune_linear_layer(self.v, index) |
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): |
|
""" |
|
Adapted from Mesh Tensorflow: |
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 |
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as |
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to |
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for |
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative |
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. |
|
This should allow for more graceful generalization to longer sequences than the model has been trained on |
|
|
|
Args: |
|
relative_position: an int32 Tensor |
|
bidirectional: a boolean - whether the attention is bidirectional |
|
num_buckets: an integer |
|
max_distance: an integer |
|
|
|
Returns: |
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) |
|
""" |
|
relative_buckets = 0 |
|
if bidirectional: |
|
num_buckets //= 2 |
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
else: |
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) |
|
|
|
|
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
|
|
|
|
relative_position_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_position_if_large = torch.min( |
|
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length, device=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
|
|
|
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
kv_seq_len = key_states.shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, seq_length)) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_bias) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states.transpose(1, 2), |
|
key_states.transpose(1, 2), |
|
value_states.transpose(1, 2), |
|
mask, seq_length, dropout=self.dropout |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = self.o(unshape(attn_output)) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_output,) |
|
return outputs |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
class T5SdpaAttention(T5Attention): |
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = T5RotaryEmbedding( |
|
self.key_value_proj_dim, |
|
max_position_embeddings=self.config.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = T5LinearScalingRotaryEmbedding( |
|
self.attention_head_size, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = T5DynamicNTKScalingRotaryEmbedding( |
|
self.attention_head_size, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.q = prune_linear_layer(self.q, index) |
|
self.k = prune_linear_layer(self.k, index) |
|
self.v = prune_linear_layer(self.v, index) |
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): |
|
""" |
|
Adapted from Mesh Tensorflow: |
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 |
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as |
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to |
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for |
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative |
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. |
|
This should allow for more graceful generalization to longer sequences than the model has been trained on |
|
|
|
Args: |
|
relative_position: an int32 Tensor |
|
bidirectional: a boolean - whether the attention is bidirectional |
|
num_buckets: an integer |
|
max_distance: an integer |
|
|
|
Returns: |
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) |
|
""" |
|
relative_buckets = 0 |
|
if bidirectional: |
|
num_buckets //= 2 |
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
else: |
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) |
|
|
|
|
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
|
|
|
|
relative_position_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_position_if_large = torch.min( |
|
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length, device=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
|
|
|
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
kv_seq_len = key_states.shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, seq_length)) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_bias) |
|
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=self.is_causal and mask is None and seq_length > 1, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = self.o(unshape(attn_output)) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_output,) |
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
T5_ATTENTION_CLASSES = { |
|
"eager": T5Attention, |
|
"flash_attention_2": T5FlashAttention2, |
|
'sdpa': T5SdpaAttention |
|
} |
|
|
|
class T5LayerSelfAttention(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.SelfAttention = T5_ATTENTION_CLASSES[config._attn_implementation](config, has_relative_attention_bias=has_relative_attention_bias, is_causal=config.is_decoder) |
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.SelfAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (hidden_states,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class T5LayerCrossAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.EncDecAttention = T5_ATTENTION_CLASSES[config._attn_implementation](config, has_relative_attention_bias=False) |
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
key_value_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
query_length=None, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
) |
|
layer_output = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (layer_output,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class T5Block(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.layer = nn.ModuleList() |
|
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) |
|
if self.is_decoder: |
|
self.layer.append(T5LayerCrossAttention(config)) |
|
|
|
self.layer.append(T5LayerFF(config)) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
encoder_decoder_position_bias=None, |
|
layer_head_mask=None, |
|
cross_attn_layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
return_dict=True, |
|
): |
|
if past_key_value is not None: |
|
if not self.is_decoder: |
|
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") |
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 |
|
|
|
if len(past_key_value) != expected_num_past_key_values: |
|
raise ValueError( |
|
f"There should be {expected_num_past_key_values} past states. " |
|
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" |
|
f"Got {len(past_key_value)} past key / value states" |
|
) |
|
|
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
self_attention_outputs = self.layer[0]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=self_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states, present_key_value_state = self_attention_outputs[:2] |
|
attention_outputs = self_attention_outputs[2:] |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None |
|
if do_cross_attention: |
|
|
|
|
|
if present_key_value_state is not None: |
|
query_length = present_key_value_state[0].shape[2] |
|
else: |
|
query_length = None |
|
|
|
cross_attention_outputs = self.layer[1]( |
|
hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
query_length=query_length, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = cross_attention_outputs[0] |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
|
|
if present_key_value_state is not None: |
|
present_key_value_state = present_key_value_state + cross_attention_outputs[1] |
|
|
|
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:] |
|
|
|
|
|
hidden_states = self.layer[-1](hidden_states) |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if use_cache: |
|
outputs = outputs + (present_key_value_state,) + attention_outputs |
|
else: |
|
outputs = outputs + attention_outputs |
|
|
|
return outputs |
|
|
|
|
|
class T5ClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.d_model, config.d_model) |
|
self.dropout = nn.Dropout(p=config.classifier_dropout) |
|
self.out_proj = nn.Linear(config.d_model, config.num_labels) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.out_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = T5Config |
|
load_tf_weights = load_tf_weights_in_t5 |
|
base_model_prefix = "transformer" |
|
is_parallelizable = True |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["T5Block"] |
|
_keep_in_fp32_modules = ["wo"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
@property |
|
def dummy_inputs(self): |
|
input_ids = torch.tensor(DUMMY_INPUTS) |
|
input_mask = torch.tensor(DUMMY_MASK) |
|
dummy_inputs = { |
|
"decoder_input_ids": input_ids, |
|
"input_ids": input_ids, |
|
"decoder_attention_mask": input_mask, |
|
} |
|
return dummy_inputs |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
if isinstance(module, T5LayerNorm): |
|
module.weight.data.fill_(factor * 1.0) |
|
elif isinstance( |
|
module, |
|
(T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering), |
|
): |
|
|
|
|
|
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: |
|
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
if hasattr(module, "qa_outputs"): |
|
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
module.qa_outputs.bias.data.zero_() |
|
elif isinstance(module, T5ForTokenClassification): |
|
if hasattr(module, "classifier"): |
|
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
module.classifier.bias.data.zero_() |
|
elif isinstance(module, T5ClassificationHead): |
|
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.dense, "bias") and module.dense.bias is not None: |
|
module.dense.bias.data.zero_() |
|
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: |
|
module.out_proj.bias.data.zero_() |
|
elif isinstance(module, T5DenseActDense): |
|
|
|
|
|
|
|
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi, "bias") and module.wi.bias is not None: |
|
module.wi.bias.data.zero_() |
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, T5DenseGatedActDense): |
|
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: |
|
module.wi_0.bias.data.zero_() |
|
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: |
|
module.wi_1.bias.data.zero_() |
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, T5Attention): |
|
|
|
|
|
d_model = self.config.d_model |
|
key_value_proj_dim = self.config.d_kv |
|
n_heads = self.config.num_heads |
|
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) |
|
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) |
|
if module.has_relative_attention_bias: |
|
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) |
|
|
|
def _shift_right(self, input_ids): |
|
decoder_start_token_id = self.config.decoder_start_token_id |
|
pad_token_id = self.config.pad_token_id |
|
|
|
if decoder_start_token_id is None: |
|
raise ValueError( |
|
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " |
|
"See T5 docs for more information." |
|
) |
|
|
|
|
|
if is_torch_fx_proxy(input_ids): |
|
|
|
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) |
|
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) |
|
else: |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = decoder_start_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError("self.model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
|
|
class T5Stack(T5PreTrainedModel): |
|
def __init__(self, config, embed_tokens=None): |
|
super().__init__(config) |
|
|
|
self.embed_tokens = embed_tokens |
|
self.is_decoder = config.is_decoder |
|
|
|
self.block = nn.ModuleList( |
|
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] |
|
) |
|
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
self._use_sdpa = config._attn_implementation == "sdpa" |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" |
|
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," |
|
" 'block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
|
|
self.device_map = ( |
|
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.block)) |
|
self.model_parallel = True |
|
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) |
|
self.last_device = "cuda:" + str(max(self.device_map.keys())) |
|
|
|
for k, v in self.device_map.items(): |
|
for layer in v: |
|
cuda_device = "cuda:" + str(k) |
|
self.block[layer] = self.block[layer].to(cuda_device) |
|
|
|
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
|
|
self.final_layer_norm = self.final_layer_norm.to(self.last_device) |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.model_parallel = False |
|
self.device_map = None |
|
self.first_device = "cpu" |
|
self.last_device = "cpu" |
|
for i in range(len(self.block)): |
|
self.block[i] = self.block[i].to("cpu") |
|
self.embed_tokens = self.embed_tokens.to("cpu") |
|
self.final_layer_norm = self.final_layer_norm.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embed_tokens = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.first_device) |
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
if self.embed_tokens is None: |
|
raise ValueError("You have to initialize the model with valid token embeddings") |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
|
|
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length |
|
|
|
if use_cache is True: |
|
if not self.is_decoder: |
|
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
|
|
|
|
if self._use_flash_attention_2: |
|
extended_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._use_sdpa: |
|
if self.is_decoder: |
|
extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
input_shape, |
|
inputs_embeds, |
|
mask_seq_length - seq_length, |
|
) |
|
else: |
|
extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) |
|
else: |
|
if attention_mask is None: |
|
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is not None: |
|
|
|
if self._use_flash_attention_2: |
|
if encoder_attention_mask is not None: |
|
encoder_extended_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None |
|
elif self._use_sdpa: |
|
encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( |
|
encoder_attention_mask, |
|
inputs_embeds.dtype, |
|
tgt_len=input_shape[-1], |
|
) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
if not self._use_sdpa and not self._use_flash_attention_2: |
|
encoder_attention_mask = torch.ones( |
|
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long |
|
) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
position_bias = None |
|
if position_bias is None: |
|
position_bias = torch.arange( |
|
0, seq_length, dtype=torch.long, |
|
) |
|
position_bias = position_bias.unsqueeze(0) |
|
|
|
encoder_decoder_position_bias = None |
|
|
|
hidden_states = self.dropout(inputs_embeds) |
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if position_bias is not None: |
|
position_bias = position_bias.to(hidden_states.device) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) |
|
if encoder_extended_attention_mask is not None: |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) |
|
if encoder_decoder_position_bias is not None: |
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) |
|
if layer_head_mask is not None: |
|
layer_head_mask = layer_head_mask.to(hidden_states.device) |
|
if cross_attn_layer_head_mask is not None: |
|
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.forward, |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
|
|
|
|
|
|
position_bias = layer_outputs[2] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] |
|
|
|
if use_cache: |
|
present_key_value_states = present_key_value_states + (present_key_value_state,) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[3],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
T5_START_DOCSTRING = r""" |
|
|
|
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text |
|
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan |
|
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a |
|
text-to-text denoising generative setting. |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`T5Config`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
T5_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you |
|
should be able to pad the inputs on both the right and the left. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for detail. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
|
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Indices of decoder input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids) |
|
|
|
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` |
|
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). |
|
|
|
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 |
|
Training](./t5#training). |
|
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also |
|
be used by default. |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in |
|
`[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): |
|
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) |
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at |
|
the output of the last layer of the encoder. Used in the cross-attention of the decoder. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded |
|
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be |
|
input (see `past_key_values`). This is useful if you want more control over how to convert |
|
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. |
|
|
|
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value |
|
of `inputs_embeds`. |
|
|
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
T5_ENCODER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you |
|
should be able to pad the inputs on both the right and the left. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for detail. |
|
|
|
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
__HEAD_MASK_WARNING_MSG = """ |
|
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, |
|
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. |
|
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, |
|
num_heads)`. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5Model(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [ |
|
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", |
|
] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" |
|
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" |
|
" 0, 'encoder.block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
decoder_inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5Model |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5Model.from_pretrained("google-t5/t5-small") |
|
|
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 |
|
|
|
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. |
|
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. |
|
>>> decoder_input_ids = model._shift_right(decoder_input_ids) |
|
|
|
>>> # forward pass |
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) |
|
class T5ForConditionalGeneration(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [ |
|
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", |
|
] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] |
|
|
|
def __init__(self, config: T5Config, shared=None): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
if shared is None: |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
else: |
|
self.shared = shared |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
self.lm_head = nn.Linear(self.shared.embedding_dim, self.shared.num_embeddings, bias=False) |
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" |
|
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" |
|
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" |
|
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.decoder.first_device) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def set_teacher(self, teacher): |
|
self.teacher = teacher |
|
|
|
def set_lm_head(self, head): |
|
self.lm_head = head |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for |
|
labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") |
|
|
|
>>> # training |
|
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids |
|
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids |
|
>>> outputs = model(input_ids=input_ids, labels=labels) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
|
|
>>> # inference |
|
>>> input_ids = tokenizer( |
|
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model.generate(input_ids) |
|
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
>>> # studies have shown that owning a dog is good for you. |
|
```""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.encoder.first_device) |
|
self.lm_head = self.lm_head.to(self.encoder.first_device) |
|
sequence_output = sequence_output.to(self.lm_head.weight.device) |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
|
|
sequence_output = sequence_output * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
|
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
decoder_attention_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
|
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
return { |
|
"decoder_input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
return self._shift_right(labels) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
|
|
|
|
if past_key_values is None: |
|
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") |
|
return past_key_values |
|
|
|
reordered_decoder_past = () |
|
for layer_past_states in past_key_values: |
|
|
|
|
|
reordered_layer_past_states = () |
|
for layer_past_state in layer_past_states: |
|
|
|
reordered_layer_past_states = reordered_layer_past_states + ( |
|
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), |
|
) |
|
|
|
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: |
|
raise ValueError( |
|
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" |
|
) |
|
if len(reordered_layer_past_states) != len(layer_past_states): |
|
raise ValueError( |
|
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" |
|
) |
|
|
|
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) |
|
return reordered_decoder_past |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5EncoderModel(T5PreTrainedModel): |
|
_tied_weights_keys = ["encoder.embed_tokens.weight"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder"] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" |
|
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," |
|
" 'block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.encoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") |
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model(input_ids=input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return encoder_outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE |
|
tasks. |
|
""", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5ForSequenceClassification(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
self.transformer = T5Model(config) |
|
self.classification_head = T5ClassificationHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
if input_ids is None and inputs_embeds is not None: |
|
raise NotImplementedError( |
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" |
|
) |
|
|
|
|
|
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
if input_ids is None: |
|
raise ValueError( |
|
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " |
|
"passed, `input_ids` cannot be `None`. Please pass either " |
|
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." |
|
) |
|
decoder_input_ids = self._shift_right(input_ids) |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
encoder_outputs=encoder_outputs, |
|
inputs_embeds=inputs_embeds, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
|
|
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) |
|
|
|
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
batch_size, _, hidden_size = sequence_output.shape |
|
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] |
|
logits = self.classification_head(sentence_representation) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.config.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.config.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqSequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output) |
|
e.g. for Named-Entity-Recognition (NER) tasks. |
|
""", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5ForTokenClassification(T5PreTrainedModel): |
|
_tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = T5EncoderModel(config) |
|
self.dropout = nn.Dropout(config.classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits, outputs[2:-1]) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers |
|
on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5ForQuestionAnswering(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
self.num_labels = config.num_labels |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
if start_positions is not None and end_positions is not None: |
|
use_cache = False |
|
|
|
|
|
|
|
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
if input_ids is None: |
|
raise ValueError( |
|
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " |
|
"passed, `input_ids` cannot be `None`. Please pass either " |
|
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." |
|
) |
|
decoder_input_ids = self._shift_right(input_ids) |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=None, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return Seq2SeqQuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |