Jiqing's picture
Create modeling_protst.py
0329051 verified
raw
history blame
7.83 kB
import math
import torch
import torch.nn as nn
from typing import Optional, Tuple, Union
from dataclasses import dataclass
from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from transformers.models.esm import EsmPreTrainedModel, EsmModel
from transformers.models.bert import BertPreTrainedModel, BertModel
from .configuration_protst import ProtSTConfig
@dataclass
class EsmProteinRepresentationOutput(ModelOutput):
protein_feature: torch.FloatTensor = None
residue_feature: torch.FloatTensor = None
@dataclass
class BertTextRepresentationOutput(ModelOutput):
text_feature: torch.FloatTensor = None
word_feature: torch.FloatTensor = None
@dataclass
class ProtSTClassificationOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
class ProtSTHead(nn.Module):
def __init__(self, config, out_dim=512):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.out_proj = nn.Linear(config.hidden_size, out_dim)
def forward(self, x):
x = self.dense(x)
x = nn.functional.relu(x)
x = self.out_proj(x)
return x
class BertForPubMed(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.pad_token_id = config.pad_token_id
self.cls_token_id = config.cls_token_id
self.sep_token_id = config.sep_token_id
self.bert = BertModel(config, add_pooling_layer=False)
self.text_mlp = ProtSTHead(config)
self.word_mlp = ProtSTHead(config)
self.post_init() # NOTE
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], ModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
word_feature = outputs.last_hidden_state
is_special = (input_ids == self.cls_token_id) | (input_ids == self.sep_token_id) | (input_ids == self.pad_token_id)
special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
pooled_feature = ((word_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(word_feature.dtype)
pooled_feature = self.text_mlp(pooled_feature)
word_feature = self.word_mlp(word_feature)
if not return_dict:
return (pooled_feature, word_feature)
return BertTextRepresentationOutput(text_feature=pooled_feature, word_feature=word_feature)
class EsmForProteinRepresentation(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.cls_token_id = config.cls_token_id
self.pad_token_id = config.pad_token_id
self.eos_token_id = config.eos_token_id
self.esm = EsmModel(config, add_pooling_layer=False)
self.post_init() # NOTE
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EsmProteinRepresentationOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
residue_feature = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim]
# mean readout
is_special = (
(input_ids == self.cls_token_id) | (input_ids == self.eos_token_id) | (input_ids == self.pad_token_id)
)
special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
protein_feature = ((residue_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(residue_feature.dtype)
return EsmProteinRepresentationOutput(
protein_feature=protein_feature, residue_feature=residue_feature
)
class ProtSTPreTrainedModel(PreTrainedModel):
config_class = ProtSTConfig
class ProtSTForProteinPropertyPrediction(ProtSTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.protein_model = EsmForProteinRepresentation(config.protein_config)
self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
self.classifier = ProtSTHead(config.protein_config, out_dim=config.num_labels)
self.post_init() # NOTE
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ProtSTClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the protein classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Examples:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.protein_model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.classifier(outputs.protein_feature) # [bsz, xxx] -> [bsz, num_labels]
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, logits.shape[-1]), labels.view(-1))
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return ProtSTClassificationOutput(loss=loss, logits=logits)