|
import math |
|
import torch |
|
import torch.nn as nn |
|
from typing import Optional, Tuple, Union |
|
from dataclasses import dataclass |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.models.esm import EsmPreTrainedModel, EsmModel |
|
from transformers.models.bert import BertPreTrainedModel, BertModel |
|
from .configuration_protst import ProtSTConfig |
|
|
|
|
|
@dataclass |
|
class EsmProteinRepresentationOutput(ModelOutput): |
|
|
|
protein_feature: torch.FloatTensor = None |
|
residue_feature: torch.FloatTensor = None |
|
|
|
|
|
@dataclass |
|
class BertTextRepresentationOutput(ModelOutput): |
|
|
|
text_feature: torch.FloatTensor = None |
|
word_feature: torch.FloatTensor = None |
|
|
|
|
|
@dataclass |
|
class ProtSTClassificationOutput(ModelOutput): |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
|
|
class ProtSTHead(nn.Module): |
|
def __init__(self, config, out_dim=512): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.out_proj = nn.Linear(config.hidden_size, out_dim) |
|
|
|
def forward(self, x): |
|
x = self.dense(x) |
|
x = nn.functional.relu(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class BertForPubMed(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.pad_token_id = config.pad_token_id |
|
self.cls_token_id = config.cls_token_id |
|
self.sep_token_id = config.sep_token_id |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.text_mlp = ProtSTHead(config) |
|
self.word_mlp = ProtSTHead(config) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], ModelOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
word_feature = outputs.last_hidden_state |
|
is_special = (input_ids == self.cls_token_id) | (input_ids == self.sep_token_id) | (input_ids == self.pad_token_id) |
|
special_mask = (~is_special).to(torch.int64).unsqueeze(-1) |
|
pooled_feature = ((word_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(word_feature.dtype) |
|
pooled_feature = self.text_mlp(pooled_feature) |
|
word_feature = self.word_mlp(word_feature) |
|
|
|
if not return_dict: |
|
return (pooled_feature, word_feature) |
|
|
|
return BertTextRepresentationOutput(text_feature=pooled_feature, word_feature=word_feature) |
|
|
|
|
|
|
|
|
|
class EsmForProteinRepresentation(EsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.cls_token_id = config.cls_token_id |
|
self.pad_token_id = config.pad_token_id |
|
self.eos_token_id = config.eos_token_id |
|
|
|
self.esm = EsmModel(config, add_pooling_layer=False) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, EsmProteinRepresentationOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
residue_feature = outputs.last_hidden_state |
|
|
|
|
|
is_special = ( |
|
(input_ids == self.cls_token_id) | (input_ids == self.eos_token_id) | (input_ids == self.pad_token_id) |
|
) |
|
special_mask = (~is_special).to(torch.int64).unsqueeze(-1) |
|
protein_feature = ((residue_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(residue_feature.dtype) |
|
|
|
return EsmProteinRepresentationOutput( |
|
protein_feature=protein_feature, residue_feature=residue_feature |
|
) |
|
|
|
|
|
class ProtSTPreTrainedModel(PreTrainedModel): |
|
config_class = ProtSTConfig |
|
|
|
|
|
class ProtSTForProteinPropertyPrediction(ProtSTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
self.protein_model = EsmForProteinRepresentation(config.protein_config) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07)) |
|
self.classifier = ProtSTHead(config.protein_config, out_dim=config.num_labels) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ProtSTClassificationOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the protein classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
Returns: |
|
Examples: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.protein_model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
logits = self.classifier(outputs.protein_feature) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
labels = labels.to(logits.device) |
|
loss = loss_fct(logits.view(-1, logits.shape[-1]), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ProtSTClassificationOutput(loss=loss, logits=logits) |