PEFT
code
instruct
mistral
souvik0306 commited on
Commit
f279f3a
1 Parent(s): faac4b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -46
README.md CHANGED
@@ -1,74 +1,43 @@
1
  ---
2
  library_name: peft
3
- license: apache-2.0
4
- ---
5
- ## Training procedure
6
-
7
-
8
- The following `bitsandbytes` quantization config was used during training:
9
- - quant_method: bitsandbytes
10
- - load_in_8bit: False
11
- - load_in_4bit: True
12
- - llm_int8_threshold: 6.0
13
- - llm_int8_skip_modules: None
14
- - llm_int8_enable_fp32_cpu_offload: False
15
- - llm_int8_has_fp16_weight: False
16
- - bnb_4bit_quant_type: nf4
17
- - bnb_4bit_use_double_quant: True
18
- - bnb_4bit_compute_dtype: bfloat16
19
- ### Framework versions
20
-
21
-
22
- - PEFT 0.5.0
23
-
24
- - ---
25
- library_name: peft
26
  tags:
27
  - code
28
  - instruct
29
- - gpt2
30
  datasets:
31
- - HuggingFaceH4/no_robots
32
- base_model: gpt2
33
  license: apache-2.0
34
  ---
35
 
36
  ### Finetuning Overview:
37
 
38
- **Model Used:** gpt2
39
 
40
- **Dataset:** HuggingFaceH4/no_robots
41
 
42
  #### Dataset Insights:
43
 
44
- [No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
45
 
46
  #### Finetuning Details:
47
 
48
- With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
49
 
50
  - Was achieved with great cost-effectiveness.
51
- - Completed in a total duration of 3mins 40s for 1 epoch using an A6000 48GB GPU.
52
- - Costed `$0.101` for the entire epoch.
53
 
54
  #### Hyperparameters & Additional Details:
55
 
56
  - **Epochs:** 1
57
- - **Cost Per Epoch:** $0.101
58
- - **Total Finetuning Cost:** $0.101
59
- - **Model Path:** gpt2
60
  - **Learning Rate:** 0.0002
61
  - **Data Split:** 100% train
62
- - **Gradient Accumulation Steps:** 4
63
- - **lora r:** 32
64
- - **lora alpha:** 64
65
-
66
- #### Prompt Structure
67
- ```
68
- <|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
69
- ```
70
- #### Training loss :
71
-
72
- ![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/9bgb518kFwtDsFtrHzmTu.png)
73
 
 
74
  license: apache-2.0
 
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
  - code
5
  - instruct
6
+ - mistral
7
  datasets:
8
+ - cognitivecomputations/dolphin-coder
9
+ base_model: mistralai/Mistral-7B-v0.1
10
  license: apache-2.0
11
  ---
12
 
13
  ### Finetuning Overview:
14
 
15
+ **Model Used:** mistralai/Mistral-7B-v0.1
16
 
17
+ **Dataset:** cognitivecomputations/dolphin-coder
18
 
19
  #### Dataset Insights:
20
 
21
+ [Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) Dolphin-Coder dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks.
22
 
23
  #### Finetuning Details:
24
 
25
+ With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
26
 
27
  - Was achieved with great cost-effectiveness.
28
+ - Completed in a total duration of 15hr 36mins for 1 epochs using an A6000 48GB GPU.
29
+ - Costed `$31.51` for the entire 1 epoch.
30
 
31
  #### Hyperparameters & Additional Details:
32
 
33
  - **Epochs:** 1
34
+ - **Cost Per Epoch:** $31.51
35
+ - **Model Path:** mistralai/Mistral-7B-v0.1
 
36
  - **Learning Rate:** 0.0002
37
  - **Data Split:** 100% train
38
+ - **Gradient Accumulation Steps:** 64
39
+ - **lora r:** 64
40
+ - **lora alpha:** 16
 
 
 
 
 
 
 
 
41
 
42
+ ---
43
  license: apache-2.0