Mousaicv commited on
Commit
cc44b5b
1 Parent(s): ce0df75

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.28 +/- 14.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c16e41b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c16e41c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c16e41ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c16e41d30>", "_build": "<function ActorCriticPolicy._build at 0x7f4c16e41dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4c16e41e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c16e41ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c16e41f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4c16e45040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c16e450d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c16e45160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c16e451f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4c16e44800>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679803471928814938, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA8k70AhFs/nwNMvLvnAL/h4AY92ruovQAAAAAAAAAA4FNHvuxCLD/AbUo9qWG1vl2IAr5aUUY9AAAAAAAAAAAzmpo99gx7ut7DMb7bu+S9WochPSlxRj8AAIA/AACAP5qbQr2uJam6DuvXM1moK6+OJrG6rtyxswAAgD8AAIA/pjKuvXXUcz4PX8I9hh5zvpZK4LySDD49AAAAAAAAAAAzH/U8AoSFP7qGGT1JduW+xo9GPRwfxbwAAAAAAAAAADMn6LwpqHq6A7NdORw8hDQNQau6UxCBuAAAgD8AAIA/M3Ikvc6X+T0qVwE+rEdavjpvobw7dR89AAAAAAAAAACAM849U+cjP0mNtr0eJ9m+6Mm5POA81b0AAAAAAAAAAOhTlb587jU/8jRbPTJUtb7whve9qL9ZPgAAAAAAAAAAk9smPuZjmD5ah0W+YQSavs7P+rt1AHC9AAAAAAAAAAAz0z26bIfdPA7OVT0NZGa+BSt2PFOcBL0AAAAAAAAAADPC8bzZiRc+6WdAPleAnL7e/QM+Cg3vvQAAAAAAAAAAQJvJvbsQtT7wW9o93wtTvr25uj3YO+88AAAAAAAAAAB23k++sfeQPXBxOz62K2G+mqmTvQM37DsAAAAAAAAAAI2UA76fibs+wDxpPQkaob7Mk4y9ZYBdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZwsIrcdhcECUhpRSlIwBbJRNBwGMAXSUR0CQqeFjd56ddX2UKGgGaAloD0MIK9mxEYgRS0CUhpRSlGgVTegDaBZHQJCqFJJ5E+h1fZQoaAZoCWgPQwgTY5l+SXdyQJSGlFKUaBVNRgFoFkdAkKzbhNucc3V9lChoBmgJaA9DCI/HDFTGxnBAlIaUUpRoFU0LAWgWR0CQrSA93bEhdX2UKGgGaAloD0MIDW5rC8+rb0CUhpRSlGgVTSsBaBZHQJCtR09yLht1fZQoaAZoCWgPQwiDoQ4r3D1yQJSGlFKUaBVNHAFoFkdAkK2SzcAR03V9lChoBmgJaA9DCC18fa1Le3BAlIaUUpRoFU10AWgWR0CQre18stkGdX2UKGgGaAloD0MIGvm84ulScECUhpRSlGgVTQ4BaBZHQJCuhr6+FlF1fZQoaAZoCWgPQwiVm6iluYZwQJSGlFKUaBVNIAFoFkdAkK809t/FznV9lChoBmgJaA9DCLt868N6SXFAlIaUUpRoFU0EAWgWR0CQsBIikftAdX2UKGgGaAloD0MImUaTi/GOcECUhpRSlGgVTVEBaBZHQJCxq0Sh8IB1fZQoaAZoCWgPQwj0FaQZyy9xQJSGlFKUaBVNFwFoFkdAkLIBEfDDTHV9lChoBmgJaA9DCI1GPq+4kXBAlIaUUpRoFU0PAWgWR0CQskoSL61tdX2UKGgGaAloD0MI2pHqO3+ZckCUhpRSlGgVTTIBaBZHQJCyUGHHmzV1fZQoaAZoCWgPQwiE8j6OprBwQJSGlFKUaBVL+mgWR0CQs2IldC3PdX2UKGgGaAloD0MIDksDP6ogcUCUhpRSlGgVTVIBaBZHQJCz7UqhDgJ1fZQoaAZoCWgPQwjh7qzddkdyQJSGlFKUaBVNEAFoFkdAkLQfs/pt8HV9lChoBmgJaA9DCBOdZRbh43FAlIaUUpRoFUvkaBZHQJC1NX/5tWN1fZQoaAZoCWgPQwh39SoyOiBwQJSGlFKUaBVNBQFoFkdAkLWDHjp9qnV9lChoBmgJaA9DCOQQcXMqhW1AlIaUUpRoFU02AWgWR0CQtz6ZH/cWdX2UKGgGaAloD0MII6Et5xL/cUCUhpRSlGgVTToBaBZHQJC3lWMju8d1fZQoaAZoCWgPQwgWTtL8MTxxQJSGlFKUaBVNUAFoFkdAkLgA9mpVCHV9lChoBmgJaA9DCKj91k6UhG5AlIaUUpRoFU0UAWgWR0CQuFz/ZM+NdX2UKGgGaAloD0MIFmwjniyXcUCUhpRSlGgVTTwBaBZHQJC4bMxGlRB1fZQoaAZoCWgPQwhpcjEGlmpxQJSGlFKUaBVNNQFoFkdAkLiuLrHEM3V9lChoBmgJaA9DCLIqwk3GM25AlIaUUpRoFUv0aBZHQJC487ihnJ11fZQoaAZoCWgPQwjeAgmKX2pwQJSGlFKUaBVNHQFoFkdAkLpgZOzpo3V9lChoBmgJaA9DCGl0B7GzAGRAlIaUUpRoFU3oA2gWR0CQunon8baRdX2UKGgGaAloD0MIKQXdXhJxcUCUhpRSlGgVS+9oFkdAkLsNRNyo43V9lChoBmgJaA9DCMNIL2o3k3BAlIaUUpRoFU04AWgWR0CQuydAPd2xdX2UKGgGaAloD0MIeOxnsdQJcUCUhpRSlGgVTRIBaBZHQJC7tsoDxLF1fZQoaAZoCWgPQwgrvqHwGdFxQJSGlFKUaBVNXgFoFkdAkL0pTQ3PzHV9lChoBmgJaA9DCBjRdkxdZ3BAlIaUUpRoFU0yAWgWR0CQvc0u14PgdX2UKGgGaAloD0MI3ZVdMDipckCUhpRSlGgVTUwBaBZHQJC+1yCFsYV1fZQoaAZoCWgPQwjRyVLrfV5wQJSGlFKUaBVNFQFoFkdAkL8/hMrVfHV9lChoBmgJaA9DCJ/MP/rmanFAlIaUUpRoFU0DAWgWR0CQv3x8lXzUdX2UKGgGaAloD0MIt+ulKQI4cUCUhpRSlGgVTT8BaBZHQJDAONXHR1J1fZQoaAZoCWgPQwjrGcIxyxxwQJSGlFKUaBVNDwFoFkdAkMCAcghbGHV9lChoBmgJaA9DCMdkcf8RGm5AlIaUUpRoFU0nAWgWR0CQwIrhzeXSdX2UKGgGaAloD0MICcOAJZf0ckCUhpRSlGgVTUEBaBZHQJDBjDLr5Zd1fZQoaAZoCWgPQwiDMLd7ublvQJSGlFKUaBVNCwFoFkdAkMLCFoL5RHV9lChoBmgJaA9DCADirl6F+HBAlIaUUpRoFU0uAWgWR0CQwv+MIeHSdX2UKGgGaAloD0MIoHB2a5kxb0CUhpRSlGgVTTABaBZHQJDV0ZwXIlt1fZQoaAZoCWgPQwgucHms2XBxQJSGlFKUaBVNFQFoFkdAkNZx4QjD9HV9lChoBmgJaA9DCFzMzw1NSTtAlIaUUpRoFUvRaBZHQJDX6mce8wp1fZQoaAZoCWgPQwjyRBDnYVdvQJSGlFKUaBVNFAFoFkdAkNlzNUwSJ3V9lChoBmgJaA9DCAVqMXiYYjpAlIaUUpRoFUvNaBZHQJDZ4avRqoJ1fZQoaAZoCWgPQwhUqkTZ2xdpQJSGlFKUaBVN1AJoFkdAkNnvpMYdhnV9lChoBmgJaA9DCL4vLlVp63BAlIaUUpRoFU1PAWgWR0CQ2xqDK5kLdX2UKGgGaAloD0MIwJfCg6YbcECUhpRSlGgVTRMBaBZHQJDb0dp7Czl1fZQoaAZoCWgPQwj52ch1kylwQJSGlFKUaBVNJAFoFkdAkNwwNTcZcnV9lChoBmgJaA9DCGLWi6Ec23FAlIaUUpRoFU0LAWgWR0CQ3MNfgJkYdX2UKGgGaAloD0MIgjy7fOv2cECUhpRSlGgVTRIBaBZHQJDdDnp0OmR1fZQoaAZoCWgPQwjbb+1EyWhvQJSGlFKUaBVL+mgWR0CQ3YPRRdhRdX2UKGgGaAloD0MIsP86N+3ga0CUhpRSlGgVS/JoFkdAkN6TTz/ZNHV9lChoBmgJaA9DCMehfhc2xW9AlIaUUpRoFU0oAWgWR0CQ4SelsP8RdX2UKGgGaAloD0MIqBlSRXGzcECUhpRSlGgVTRsBaBZHQJDhyI+GGmF1fZQoaAZoCWgPQwgjgnFwqZ1yQJSGlFKUaBVNOQFoFkdAkOIn0TURWnV9lChoBmgJaA9DCHiY9s39BnJAlIaUUpRoFU0HAWgWR0CQ4uIBBAv+dX2UKGgGaAloD0MIiULLun88UUCUhpRSlGgVS6hoFkdAkOLuZkTYd3V9lChoBmgJaA9DCGPuWkJ+lXFAlIaUUpRoFUv1aBZHQJDjzJU5uIh1fZQoaAZoCWgPQwgf963WSQZyQJSGlFKUaBVL7WgWR0CQ5KMcIZ62dX2UKGgGaAloD0MIUKbR5OL2cECUhpRSlGgVTSIBaBZHQJDlSU2UB4l1fZQoaAZoCWgPQwiBBTBloHJwQJSGlFKUaBVL72gWR0CQ5XRG+bmVdX2UKGgGaAloD0MIg/dVuRDHckCUhpRSlGgVTSYBaBZHQJDl1Z2ZApt1fZQoaAZoCWgPQwgiUtMupg1HQJSGlFKUaBVLt2gWR0CQ5jLV4HHFdX2UKGgGaAloD0MIhCnKpfFMbkCUhpRSlGgVS+ZoFkdAkOZZmVZ9u3V9lChoBmgJaA9DCNNsHoeBz3BAlIaUUpRoFU0DAWgWR0CQ5960IC2ddX2UKGgGaAloD0MIn6wYrk6/ckCUhpRSlGgVTTcBaBZHQJDpCuNgjQl1fZQoaAZoCWgPQwh4l4v4TultQJSGlFKUaBVL6mgWR0CQ6qP/7zkIdX2UKGgGaAloD0MIhzHp7+V3cECUhpRSlGgVTQ8BaBZHQJDrW/QBxPx1fZQoaAZoCWgPQwhy+Q/pt5s2QJSGlFKUaBVL2WgWR0CQ65fbsWwedX2UKGgGaAloD0MIoTAo06hLcECUhpRSlGgVS/9oFkdAkOwOaKDTSnV9lChoBmgJaA9DCNjxXyCIxGJAlIaUUpRoFU3oA2gWR0CQ7K+BpYcOdX2UKGgGaAloD0MIbATidf1ySUCUhpRSlGgVS91oFkdAkOzkYKpkw3V9lChoBmgJaA9DCAJKQ40ClHBAlIaUUpRoFU0zAWgWR0CQ7RFzdUKidX2UKGgGaAloD0MIejVAaagqcECUhpRSlGgVS+JoFkdAkO1LOZ9d/3V9lChoBmgJaA9DCLyQDg/h9nBAlIaUUpRoFU05AWgWR0CQ7a8jzI3jdX2UKGgGaAloD0MIlL4Qch4Nc0CUhpRSlGgVTQcBaBZHQJDt7RjSXt11fZQoaAZoCWgPQwi4zVSIh7NxQJSGlFKUaBVNMQFoFkdAkO6UuHvc8HV9lChoBmgJaA9DCC2wx0SK7XBAlIaUUpRoFU0cAWgWR0CQ7zsrupjudX2UKGgGaAloD0MIGckeoWZXcUCUhpRSlGgVTSMBaBZHQJDvTAqNIbx1fZQoaAZoCWgPQwi8eapDbn5ZQJSGlFKUaBVN6ANoFkdAkO+pvP1L8XV9lChoBmgJaA9DCEzChTzCJHBAlIaUUpRoFU0YAWgWR0CQ8CII4VASdX2UKGgGaAloD0MIlIPZBBi+QkCUhpRSlGgVS7toFkdAkPCMFEAo5XV9lChoBmgJaA9DCKlQ3Vw8w3BAlIaUUpRoFU0pAWgWR0CQ8UOPvKEGdX2UKGgGaAloD0MIboeGxSj0cECUhpRSlGgVTRoBaBZHQJDyHpwCKaZ1fZQoaAZoCWgPQwg0EqERbLxxQJSGlFKUaBVL8GgWR0CQ8wj59E1EdX2UKGgGaAloD0MI7KNTV/7VckCUhpRSlGgVTSkBaBZHQJDzK7kGRmt1fZQoaAZoCWgPQwjIKM+8HNttQJSGlFKUaBVNEQFoFkdAkPMusPrfL3V9lChoBmgJaA9DCHB4QURqKiJAlIaUUpRoFUu+aBZHQJDzaCoS+QF1fZQoaAZoCWgPQwjQ0hVso2tvQJSGlFKUaBVL/WgWR0CQ88LB9Cu2dX2UKGgGaAloD0MIJnMs7yrScECUhpRSlGgVTRgBaBZHQJDz5J2+wkh1fZQoaAZoCWgPQwgn9tA+luVxQJSGlFKUaBVNBgFoFkdAkPRQJ5VwP3V9lChoBmgJaA9DCJ0Te2jfQnJAlIaUUpRoFU0mAWgWR0CQ9IeEqUeNdX2UKGgGaAloD0MIe9rhr4lbckCUhpRSlGgVS+hoFkdAkPUKlYU343V9lChoBmgJaA9DCNaQuMdSAnJAlIaUUpRoFU0kAWgWR0CQ9TzwtrbhdX2UKGgGaAloD0MIOrGH9rG+QUCUhpRSlGgVS7toFkdAkPU65kK/mHV9lChoBmgJaA9DCIhlM4ekRG9AlIaUUpRoFUv+aBZHQJD1eCHymQ91fZQoaAZoCWgPQwgcmNwoMmlxQJSGlFKUaBVL+GgWR0CQ9h4iosI3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea627e8309ecee4b36f4700286410d20174271fa65cbd9b0efa4f02887482c56
3
+ size 147393
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c16e41b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c16e41c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c16e41ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c16e41d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4c16e41dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4c16e41e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c16e41ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c16e41f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4c16e45040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c16e450d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c16e45160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c16e451f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f4c16e44800>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679803471928814938,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA8k70AhFs/nwNMvLvnAL/h4AY92ruovQAAAAAAAAAA4FNHvuxCLD/AbUo9qWG1vl2IAr5aUUY9AAAAAAAAAAAzmpo99gx7ut7DMb7bu+S9WochPSlxRj8AAIA/AACAP5qbQr2uJam6DuvXM1moK6+OJrG6rtyxswAAgD8AAIA/pjKuvXXUcz4PX8I9hh5zvpZK4LySDD49AAAAAAAAAAAzH/U8AoSFP7qGGT1JduW+xo9GPRwfxbwAAAAAAAAAADMn6LwpqHq6A7NdORw8hDQNQau6UxCBuAAAgD8AAIA/M3Ikvc6X+T0qVwE+rEdavjpvobw7dR89AAAAAAAAAACAM849U+cjP0mNtr0eJ9m+6Mm5POA81b0AAAAAAAAAAOhTlb587jU/8jRbPTJUtb7whve9qL9ZPgAAAAAAAAAAk9smPuZjmD5ah0W+YQSavs7P+rt1AHC9AAAAAAAAAAAz0z26bIfdPA7OVT0NZGa+BSt2PFOcBL0AAAAAAAAAADPC8bzZiRc+6WdAPleAnL7e/QM+Cg3vvQAAAAAAAAAAQJvJvbsQtT7wW9o93wtTvr25uj3YO+88AAAAAAAAAAB23k++sfeQPXBxOz62K2G+mqmTvQM37DsAAAAAAAAAAI2UA76fibs+wDxpPQkaob7Mk4y9ZYBdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZwsIrcdhcECUhpRSlIwBbJRNBwGMAXSUR0CQqeFjd56ddX2UKGgGaAloD0MIK9mxEYgRS0CUhpRSlGgVTegDaBZHQJCqFJJ5E+h1fZQoaAZoCWgPQwgTY5l+SXdyQJSGlFKUaBVNRgFoFkdAkKzbhNucc3V9lChoBmgJaA9DCI/HDFTGxnBAlIaUUpRoFU0LAWgWR0CQrSA93bEhdX2UKGgGaAloD0MIDW5rC8+rb0CUhpRSlGgVTSsBaBZHQJCtR09yLht1fZQoaAZoCWgPQwiDoQ4r3D1yQJSGlFKUaBVNHAFoFkdAkK2SzcAR03V9lChoBmgJaA9DCC18fa1Le3BAlIaUUpRoFU10AWgWR0CQre18stkGdX2UKGgGaAloD0MIGvm84ulScECUhpRSlGgVTQ4BaBZHQJCuhr6+FlF1fZQoaAZoCWgPQwiVm6iluYZwQJSGlFKUaBVNIAFoFkdAkK809t/FznV9lChoBmgJaA9DCLt868N6SXFAlIaUUpRoFU0EAWgWR0CQsBIikftAdX2UKGgGaAloD0MImUaTi/GOcECUhpRSlGgVTVEBaBZHQJCxq0Sh8IB1fZQoaAZoCWgPQwj0FaQZyy9xQJSGlFKUaBVNFwFoFkdAkLIBEfDDTHV9lChoBmgJaA9DCI1GPq+4kXBAlIaUUpRoFU0PAWgWR0CQskoSL61tdX2UKGgGaAloD0MI2pHqO3+ZckCUhpRSlGgVTTIBaBZHQJCyUGHHmzV1fZQoaAZoCWgPQwiE8j6OprBwQJSGlFKUaBVL+mgWR0CQs2IldC3PdX2UKGgGaAloD0MIDksDP6ogcUCUhpRSlGgVTVIBaBZHQJCz7UqhDgJ1fZQoaAZoCWgPQwjh7qzddkdyQJSGlFKUaBVNEAFoFkdAkLQfs/pt8HV9lChoBmgJaA9DCBOdZRbh43FAlIaUUpRoFUvkaBZHQJC1NX/5tWN1fZQoaAZoCWgPQwh39SoyOiBwQJSGlFKUaBVNBQFoFkdAkLWDHjp9qnV9lChoBmgJaA9DCOQQcXMqhW1AlIaUUpRoFU02AWgWR0CQtz6ZH/cWdX2UKGgGaAloD0MII6Et5xL/cUCUhpRSlGgVTToBaBZHQJC3lWMju8d1fZQoaAZoCWgPQwgWTtL8MTxxQJSGlFKUaBVNUAFoFkdAkLgA9mpVCHV9lChoBmgJaA9DCKj91k6UhG5AlIaUUpRoFU0UAWgWR0CQuFz/ZM+NdX2UKGgGaAloD0MIFmwjniyXcUCUhpRSlGgVTTwBaBZHQJC4bMxGlRB1fZQoaAZoCWgPQwhpcjEGlmpxQJSGlFKUaBVNNQFoFkdAkLiuLrHEM3V9lChoBmgJaA9DCLIqwk3GM25AlIaUUpRoFUv0aBZHQJC487ihnJ11fZQoaAZoCWgPQwjeAgmKX2pwQJSGlFKUaBVNHQFoFkdAkLpgZOzpo3V9lChoBmgJaA9DCGl0B7GzAGRAlIaUUpRoFU3oA2gWR0CQunon8baRdX2UKGgGaAloD0MIKQXdXhJxcUCUhpRSlGgVS+9oFkdAkLsNRNyo43V9lChoBmgJaA9DCMNIL2o3k3BAlIaUUpRoFU04AWgWR0CQuydAPd2xdX2UKGgGaAloD0MIeOxnsdQJcUCUhpRSlGgVTRIBaBZHQJC7tsoDxLF1fZQoaAZoCWgPQwgrvqHwGdFxQJSGlFKUaBVNXgFoFkdAkL0pTQ3PzHV9lChoBmgJaA9DCBjRdkxdZ3BAlIaUUpRoFU0yAWgWR0CQvc0u14PgdX2UKGgGaAloD0MI3ZVdMDipckCUhpRSlGgVTUwBaBZHQJC+1yCFsYV1fZQoaAZoCWgPQwjRyVLrfV5wQJSGlFKUaBVNFQFoFkdAkL8/hMrVfHV9lChoBmgJaA9DCJ/MP/rmanFAlIaUUpRoFU0DAWgWR0CQv3x8lXzUdX2UKGgGaAloD0MIt+ulKQI4cUCUhpRSlGgVTT8BaBZHQJDAONXHR1J1fZQoaAZoCWgPQwjrGcIxyxxwQJSGlFKUaBVNDwFoFkdAkMCAcghbGHV9lChoBmgJaA9DCMdkcf8RGm5AlIaUUpRoFU0nAWgWR0CQwIrhzeXSdX2UKGgGaAloD0MICcOAJZf0ckCUhpRSlGgVTUEBaBZHQJDBjDLr5Zd1fZQoaAZoCWgPQwiDMLd7ublvQJSGlFKUaBVNCwFoFkdAkMLCFoL5RHV9lChoBmgJaA9DCADirl6F+HBAlIaUUpRoFU0uAWgWR0CQwv+MIeHSdX2UKGgGaAloD0MIoHB2a5kxb0CUhpRSlGgVTTABaBZHQJDV0ZwXIlt1fZQoaAZoCWgPQwgucHms2XBxQJSGlFKUaBVNFQFoFkdAkNZx4QjD9HV9lChoBmgJaA9DCFzMzw1NSTtAlIaUUpRoFUvRaBZHQJDX6mce8wp1fZQoaAZoCWgPQwjyRBDnYVdvQJSGlFKUaBVNFAFoFkdAkNlzNUwSJ3V9lChoBmgJaA9DCAVqMXiYYjpAlIaUUpRoFUvNaBZHQJDZ4avRqoJ1fZQoaAZoCWgPQwhUqkTZ2xdpQJSGlFKUaBVN1AJoFkdAkNnvpMYdhnV9lChoBmgJaA9DCL4vLlVp63BAlIaUUpRoFU1PAWgWR0CQ2xqDK5kLdX2UKGgGaAloD0MIwJfCg6YbcECUhpRSlGgVTRMBaBZHQJDb0dp7Czl1fZQoaAZoCWgPQwj52ch1kylwQJSGlFKUaBVNJAFoFkdAkNwwNTcZcnV9lChoBmgJaA9DCGLWi6Ec23FAlIaUUpRoFU0LAWgWR0CQ3MNfgJkYdX2UKGgGaAloD0MIgjy7fOv2cECUhpRSlGgVTRIBaBZHQJDdDnp0OmR1fZQoaAZoCWgPQwjbb+1EyWhvQJSGlFKUaBVL+mgWR0CQ3YPRRdhRdX2UKGgGaAloD0MIsP86N+3ga0CUhpRSlGgVS/JoFkdAkN6TTz/ZNHV9lChoBmgJaA9DCMehfhc2xW9AlIaUUpRoFU0oAWgWR0CQ4SelsP8RdX2UKGgGaAloD0MIqBlSRXGzcECUhpRSlGgVTRsBaBZHQJDhyI+GGmF1fZQoaAZoCWgPQwgjgnFwqZ1yQJSGlFKUaBVNOQFoFkdAkOIn0TURWnV9lChoBmgJaA9DCHiY9s39BnJAlIaUUpRoFU0HAWgWR0CQ4uIBBAv+dX2UKGgGaAloD0MIiULLun88UUCUhpRSlGgVS6hoFkdAkOLuZkTYd3V9lChoBmgJaA9DCGPuWkJ+lXFAlIaUUpRoFUv1aBZHQJDjzJU5uIh1fZQoaAZoCWgPQwgf963WSQZyQJSGlFKUaBVL7WgWR0CQ5KMcIZ62dX2UKGgGaAloD0MIUKbR5OL2cECUhpRSlGgVTSIBaBZHQJDlSU2UB4l1fZQoaAZoCWgPQwiBBTBloHJwQJSGlFKUaBVL72gWR0CQ5XRG+bmVdX2UKGgGaAloD0MIg/dVuRDHckCUhpRSlGgVTSYBaBZHQJDl1Z2ZApt1fZQoaAZoCWgPQwgiUtMupg1HQJSGlFKUaBVLt2gWR0CQ5jLV4HHFdX2UKGgGaAloD0MIhCnKpfFMbkCUhpRSlGgVS+ZoFkdAkOZZmVZ9u3V9lChoBmgJaA9DCNNsHoeBz3BAlIaUUpRoFU0DAWgWR0CQ5960IC2ddX2UKGgGaAloD0MIn6wYrk6/ckCUhpRSlGgVTTcBaBZHQJDpCuNgjQl1fZQoaAZoCWgPQwh4l4v4TultQJSGlFKUaBVL6mgWR0CQ6qP/7zkIdX2UKGgGaAloD0MIhzHp7+V3cECUhpRSlGgVTQ8BaBZHQJDrW/QBxPx1fZQoaAZoCWgPQwhy+Q/pt5s2QJSGlFKUaBVL2WgWR0CQ65fbsWwedX2UKGgGaAloD0MIoTAo06hLcECUhpRSlGgVS/9oFkdAkOwOaKDTSnV9lChoBmgJaA9DCNjxXyCIxGJAlIaUUpRoFU3oA2gWR0CQ7K+BpYcOdX2UKGgGaAloD0MIbATidf1ySUCUhpRSlGgVS91oFkdAkOzkYKpkw3V9lChoBmgJaA9DCAJKQ40ClHBAlIaUUpRoFU0zAWgWR0CQ7RFzdUKidX2UKGgGaAloD0MIejVAaagqcECUhpRSlGgVS+JoFkdAkO1LOZ9d/3V9lChoBmgJaA9DCLyQDg/h9nBAlIaUUpRoFU05AWgWR0CQ7a8jzI3jdX2UKGgGaAloD0MIlL4Qch4Nc0CUhpRSlGgVTQcBaBZHQJDt7RjSXt11fZQoaAZoCWgPQwi4zVSIh7NxQJSGlFKUaBVNMQFoFkdAkO6UuHvc8HV9lChoBmgJaA9DCC2wx0SK7XBAlIaUUpRoFU0cAWgWR0CQ7zsrupjudX2UKGgGaAloD0MIGckeoWZXcUCUhpRSlGgVTSMBaBZHQJDvTAqNIbx1fZQoaAZoCWgPQwi8eapDbn5ZQJSGlFKUaBVN6ANoFkdAkO+pvP1L8XV9lChoBmgJaA9DCEzChTzCJHBAlIaUUpRoFU0YAWgWR0CQ8CII4VASdX2UKGgGaAloD0MIlIPZBBi+QkCUhpRSlGgVS7toFkdAkPCMFEAo5XV9lChoBmgJaA9DCKlQ3Vw8w3BAlIaUUpRoFU0pAWgWR0CQ8UOPvKEGdX2UKGgGaAloD0MIboeGxSj0cECUhpRSlGgVTRoBaBZHQJDyHpwCKaZ1fZQoaAZoCWgPQwg0EqERbLxxQJSGlFKUaBVL8GgWR0CQ8wj59E1EdX2UKGgGaAloD0MI7KNTV/7VckCUhpRSlGgVTSkBaBZHQJDzK7kGRmt1fZQoaAZoCWgPQwjIKM+8HNttQJSGlFKUaBVNEQFoFkdAkPMusPrfL3V9lChoBmgJaA9DCHB4QURqKiJAlIaUUpRoFUu+aBZHQJDzaCoS+QF1fZQoaAZoCWgPQwjQ0hVso2tvQJSGlFKUaBVL/WgWR0CQ88LB9Cu2dX2UKGgGaAloD0MIJnMs7yrScECUhpRSlGgVTRgBaBZHQJDz5J2+wkh1fZQoaAZoCWgPQwgn9tA+luVxQJSGlFKUaBVNBgFoFkdAkPRQJ5VwP3V9lChoBmgJaA9DCJ0Te2jfQnJAlIaUUpRoFU0mAWgWR0CQ9IeEqUeNdX2UKGgGaAloD0MIe9rhr4lbckCUhpRSlGgVS+hoFkdAkPUKlYU343V9lChoBmgJaA9DCNaQuMdSAnJAlIaUUpRoFU0kAWgWR0CQ9TzwtrbhdX2UKGgGaAloD0MIOrGH9rG+QUCUhpRSlGgVS7toFkdAkPU65kK/mHV9lChoBmgJaA9DCIhlM4ekRG9AlIaUUpRoFUv+aBZHQJD1eCHymQ91fZQoaAZoCWgPQwgcmNwoMmlxQJSGlFKUaBVL+GgWR0CQ9h4iosI3dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a074857afa219dea1a5a7eb9d4d703a68b4f9dd4ae4b611c3406a9fa93042e10
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6d72252f4282dc05501d9e471872662e019524f75ab4db215a582f0873b3c36
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.27933891372686, "std_reward": 14.220349805465924, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T04:49:36.865169"}