--- base_model: argilla/notux-8x7b-v1 datasets: - argilla/ultrafeedback-binarized-preferences-cleaned language: - en - de - es - fr - it library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - dpo - rlaif - preference - ultrafeedback - moe --- ## About static quants of https://huggingface.co/argilla/notux-8x7b-v1 weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q2_K.gguf) | Q2_K | 17.6 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.IQ3_XS.gguf) | IQ3_XS | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.IQ3_S.gguf) | IQ3_S | 20.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q3_K_S.gguf) | Q3_K_S | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.IQ3_M.gguf) | IQ3_M | 21.7 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q3_K_M.gguf) | Q3_K_M | 22.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q3_K_L.gguf) | Q3_K_L | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.IQ4_XS.gguf) | IQ4_XS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q4_K_S.gguf) | Q4_K_S | 27.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q4_K_M.gguf) | Q4_K_M | 28.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q5_K_S.gguf) | Q5_K_S | 32.5 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q5_K_M.gguf) | Q5_K_M | 33.5 | | | [GGUF](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q6_K.gguf) | Q6_K | 38.6 | very good quality | | [PART 1](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/notux-8x7b-v1-GGUF/resolve/main/notux-8x7b-v1.Q8_0.gguf.part2of2) | Q8_0 | 49.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.