File size: 6,285 Bytes
a1aa382 96f90aa a1aa382 acb9390 a1aa382 96f90aa a1aa382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-3-8B
model-index:
- name: qlora_decrease_lr_promptfix
results: []
license: llama3
datasets:
- muellerzr/llama-3-8b-self-align-data-generation-results
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## Llama-3 8B Self-Instruct: PEFT Edition
This model is the result of recreating the [StarCoder2 Self-Instruct](https://huggingface.co/blog/sc2-instruct) pipeline, but applied to Llama-3-8B.
It could not have been done without the blood, sweat, and tears of my dear friends who have helped me along the way with training my first LLM.
A blog will come shortly detailing the many training runs and failures during this.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: llama3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: llama-3-8b-self-align-data-generation-results/sanitized.jsonl
ds_type: json
type:
system_prompt: "You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions."
field_system: system
field_instruction: instruction
field_output: response
format: "### Instruction:\n{instruction}\n\n### Response:\n"
no_input_format: "### Instruction:\n{instruction}\n\n### Response:\n"
dataset_prepared_path:
val_set_size: 0.05
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
save_safetensors: true
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
log_with: None
wandb_project: llama-3-8b-self-align-axolotl
wandb_entity:
wandb_watch:
wandb_name: qlora-prince-hps-promptfix
output_dir: qlora_decrease_lr_promptfix
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: false
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: false
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
lora_modules_to_save:
- embed_tokens
- lm_head
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/muellerzr/llama-3-8b-self-align-axolotl/runs/2q8jhm3e)
# qlora_decrease_lr_promptfix
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6903 | 0.0061 | 1 | 0.6706 |
| 0.6463 | 0.1285 | 21 | 0.6392 |
| 0.4944 | 0.2571 | 42 | 0.4806 |
| 0.4495 | 0.3856 | 63 | 0.4532 |
| 0.4444 | 0.5142 | 84 | 0.4406 |
| 0.4185 | 0.6427 | 105 | 0.4334 |
| 0.4336 | 0.7712 | 126 | 0.4286 |
| 0.4061 | 0.8998 | 147 | 0.4252 |
| 0.4002 | 1.0145 | 168 | 0.4221 |
| 0.4013 | 1.1431 | 189 | 0.4205 |
| 0.3674 | 1.2716 | 210 | 0.4189 |
| 0.3942 | 1.4002 | 231 | 0.4175 |
| 0.3984 | 1.5287 | 252 | 0.4165 |
| 0.3867 | 1.6572 | 273 | 0.4150 |
| 0.3872 | 1.7858 | 294 | 0.4137 |
| 0.401 | 1.9143 | 315 | 0.4130 |
| 0.3602 | 2.0275 | 336 | 0.4126 |
| 0.3817 | 2.1561 | 357 | 0.4131 |
| 0.3592 | 2.2846 | 378 | 0.4129 |
| 0.3729 | 2.4132 | 399 | 0.4127 |
| 0.372 | 2.5417 | 420 | 0.4121 |
| 0.3685 | 2.6702 | 441 | 0.4120 |
| 0.3732 | 2.7988 | 462 | 0.4115 |
| 0.38 | 2.9273 | 483 | 0.4112 |
| 0.3637 | 3.0413 | 504 | 0.4114 |
| 0.3628 | 3.1699 | 525 | 0.4118 |
| 0.355 | 3.2984 | 546 | 0.4122 |
| 0.3646 | 3.4269 | 567 | 0.4121 |
| 0.3496 | 3.5555 | 588 | 0.4121 |
| 0.3573 | 3.6840 | 609 | 0.4121 |
| 0.3598 | 3.8125 | 630 | 0.4121 |
| 0.3669 | 3.9411 | 651 | 0.4121 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |