---
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-3-8B
model-index:
- name: qlora_decrease_lr_promptfix
results: []
license: llama3
datasets:
- muellerzr/llama-3-8b-self-align-data-generation-results
---
## Llama-3 8B Self-Instruct: PEFT Edition
This model is the result of recreating the [StarCoder2 Self-Instruct](https://huggingface.co/blog/sc2-instruct) pipeline, but applied to Llama-3-8B.
It could not have been done without the blood, sweat, and tears of my dear friends who have helped me along the way with training my first LLM.
A blog will come shortly detailing the many training runs and failures during this.
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: llama3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: llama-3-8b-self-align-data-generation-results/sanitized.jsonl
ds_type: json
type:
system_prompt: "You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions."
field_system: system
field_instruction: instruction
field_output: response
format: "### Instruction:\n{instruction}\n\n### Response:\n"
no_input_format: "### Instruction:\n{instruction}\n\n### Response:\n"
dataset_prepared_path:
val_set_size: 0.05
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
save_safetensors: true
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
log_with: None
wandb_project: llama-3-8b-self-align-axolotl
wandb_entity:
wandb_watch:
wandb_name: qlora-prince-hps-promptfix
output_dir: qlora_decrease_lr_promptfix
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: false
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: false
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
lora_modules_to_save:
- embed_tokens
- lm_head
```
[](https://wandb.ai/muellerzr/llama-3-8b-self-align-axolotl/runs/2q8jhm3e)
# qlora_decrease_lr_promptfix
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6903 | 0.0061 | 1 | 0.6706 |
| 0.6463 | 0.1285 | 21 | 0.6392 |
| 0.4944 | 0.2571 | 42 | 0.4806 |
| 0.4495 | 0.3856 | 63 | 0.4532 |
| 0.4444 | 0.5142 | 84 | 0.4406 |
| 0.4185 | 0.6427 | 105 | 0.4334 |
| 0.4336 | 0.7712 | 126 | 0.4286 |
| 0.4061 | 0.8998 | 147 | 0.4252 |
| 0.4002 | 1.0145 | 168 | 0.4221 |
| 0.4013 | 1.1431 | 189 | 0.4205 |
| 0.3674 | 1.2716 | 210 | 0.4189 |
| 0.3942 | 1.4002 | 231 | 0.4175 |
| 0.3984 | 1.5287 | 252 | 0.4165 |
| 0.3867 | 1.6572 | 273 | 0.4150 |
| 0.3872 | 1.7858 | 294 | 0.4137 |
| 0.401 | 1.9143 | 315 | 0.4130 |
| 0.3602 | 2.0275 | 336 | 0.4126 |
| 0.3817 | 2.1561 | 357 | 0.4131 |
| 0.3592 | 2.2846 | 378 | 0.4129 |
| 0.3729 | 2.4132 | 399 | 0.4127 |
| 0.372 | 2.5417 | 420 | 0.4121 |
| 0.3685 | 2.6702 | 441 | 0.4120 |
| 0.3732 | 2.7988 | 462 | 0.4115 |
| 0.38 | 2.9273 | 483 | 0.4112 |
| 0.3637 | 3.0413 | 504 | 0.4114 |
| 0.3628 | 3.1699 | 525 | 0.4118 |
| 0.355 | 3.2984 | 546 | 0.4122 |
| 0.3646 | 3.4269 | 567 | 0.4121 |
| 0.3496 | 3.5555 | 588 | 0.4121 |
| 0.3573 | 3.6840 | 609 | 0.4121 |
| 0.3598 | 3.8125 | 630 | 0.4121 |
| 0.3669 | 3.9411 | 651 | 0.4121 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1