--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large results: [] --- # fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4428 - Accuracy: 0.8439 - F1: 0.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.4595 | 0.5 | 3654 | 0.4630 | 0.8064 | 0.8089 | | 0.4138 | 1.0 | 7308 | 0.4497 | 0.8146 | 0.8165 | | 0.3748 | 1.5 | 10962 | 0.4280 | 0.8420 | 0.8422 | | 0.3687 | 2.0 | 14616 | 0.4161 | 0.8363 | 0.8376 | | 0.3265 | 2.5 | 18270 | 0.4209 | 0.8459 | 0.8465 | | 0.3392 | 3.0 | 21924 | 0.4107 | 0.8459 | 0.8453 | | 0.2928 | 3.5 | 25578 | 0.4479 | 0.8395 | 0.8401 | | 0.2975 | 4.0 | 29232 | 0.4428 | 0.8439 | 0.8445 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.13.1 - Datasets 2.14.4 - Tokenizers 0.13.3