File size: 1,772 Bytes
f412b6e
5748f1d
3291ce3
 
f412b6e
 
3291ce3
f412b6e
 
 
 
 
3291ce3
 
f412b6e
3291ce3
a3b7dd2
3291ce3
 
 
 
 
a3b7dd2
f412b6e
 
3291ce3
 
 
 
 
 
 
f412b6e
3291ce3
f412b6e
 
 
 
 
 
 
 
3291ce3
f412b6e
 
3291ce3
 
f412b6e
 
 
3291ce3
 
 
 
 
 
 
 
f412b6e
 
 
 
3291ce3
 
 
f412b6e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: uzroberta-sentiment-analysis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# uzroberta-sentiment-analysis

This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0473
- Accuracy: 0.8257
- F1: 0.8287

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.3411        | 1.0   | 1156 | 0.4061          | 0.8276   | 0.8303 |
| 0.2319        | 2.0   | 2312 | 0.4074          | 0.8336   | 0.8359 |
| 0.1629        | 3.0   | 3468 | 0.5250          | 0.8394   | 0.8416 |
| 0.1082        | 4.0   | 4624 | 0.8780          | 0.8180   | 0.8219 |
| 0.0712        | 5.0   | 5780 | 0.9741          | 0.8321   | 0.8349 |
| 0.0537        | 6.0   | 6936 | 1.0473          | 0.8257   | 0.8287 |


### Framework versions

- Transformers 4.27.3
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.12.1