--- base_model: BAAI/bge-large-en-v1.5 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: I don't want to handle any filtering tasks. - text: Show me all customers who have the last name 'Doe'. - text: What tables are available for data analysis in starhub_data_asset? - text: what do you think it is? - text: Provide data_asset_001_pcc product category details. inference: true model-index: - name: SetFit with BAAI/bge-large-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9818181818181818 name: Accuracy --- # SetFit with BAAI/bge-large-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Aggregation | | | Lookup_1 | | | Viewtables | | | Tablejoin | | | Lookup | | | Generalreply | | | Rejection | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9818 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-10-3rd") # Run inference preds = model("what do you think it is?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 8.7137 | 62 | | Label | Training Sample Count | |:-------------|:----------------------| | Tablejoin | 128 | | Rejection | 73 | | Aggregation | 222 | | Lookup | 55 | | Generalreply | 75 | | Viewtables | 76 | | Lookup_1 | 157 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: 2450 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:--------:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2001 | - | | 0.0022 | 50 | 0.1566 | - | | 0.0045 | 100 | 0.0816 | - | | 0.0067 | 150 | 0.0733 | - | | 0.0089 | 200 | 0.0075 | - | | 0.0112 | 250 | 0.0059 | - | | 0.0134 | 300 | 0.0035 | - | | 0.0156 | 350 | 0.0034 | - | | 0.0179 | 400 | 0.0019 | - | | 0.0201 | 450 | 0.0015 | - | | 0.0223 | 500 | 0.0021 | - | | 0.0246 | 550 | 0.003 | - | | 0.0268 | 600 | 0.0021 | - | | 0.0290 | 650 | 0.0011 | - | | 0.0313 | 700 | 0.0015 | - | | 0.0335 | 750 | 0.0011 | - | | 0.0357 | 800 | 0.001 | - | | 0.0380 | 850 | 0.001 | - | | 0.0402 | 900 | 0.0012 | - | | 0.0424 | 950 | 0.0012 | - | | 0.0447 | 1000 | 0.0011 | - | | 0.0469 | 1050 | 0.0008 | - | | 0.0491 | 1100 | 0.0009 | - | | 0.0514 | 1150 | 0.001 | - | | 0.0536 | 1200 | 0.0008 | - | | 0.0558 | 1250 | 0.0011 | - | | 0.0581 | 1300 | 0.0009 | - | | 0.0603 | 1350 | 0.001 | - | | 0.0625 | 1400 | 0.0007 | - | | 0.0647 | 1450 | 0.0008 | - | | 0.0670 | 1500 | 0.0007 | - | | 0.0692 | 1550 | 0.001 | - | | 0.0714 | 1600 | 0.0007 | - | | 0.0737 | 1650 | 0.0007 | - | | 0.0759 | 1700 | 0.0006 | - | | 0.0781 | 1750 | 0.0008 | - | | 0.0804 | 1800 | 0.0006 | - | | 0.0826 | 1850 | 0.0005 | - | | 0.0848 | 1900 | 0.0006 | - | | 0.0871 | 1950 | 0.0005 | - | | 0.0893 | 2000 | 0.0007 | - | | 0.0915 | 2050 | 0.0005 | - | | 0.0938 | 2100 | 0.0006 | - | | 0.0960 | 2150 | 0.0007 | - | | 0.0982 | 2200 | 0.0005 | - | | 0.1005 | 2250 | 0.0008 | - | | 0.1027 | 2300 | 0.0005 | - | | 0.1049 | 2350 | 0.0008 | - | | 0.1072 | 2400 | 0.0007 | - | | **0.1094** | **2450** | **0.0007** | **0.0094** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.9 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.42.4 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```