|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Mostly copy-paste from timm library. |
|
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py |
|
""" |
|
import math |
|
from functools import partial |
|
from typing import Callable, Final, Optional, Sequence |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
from torch.nn import functional as F |
|
|
|
from .common import ensure_tuple, get_act_layer, use_fused_attn |
|
|
|
|
|
def vit_weights_init(module: nn.Module) -> None: |
|
if isinstance(module, nn.Linear): |
|
nn.init.trunc_normal_(module.weight, std=0.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.LayerNorm): |
|
nn.init.ones_(module.weight) |
|
nn.init.zeros_(module.bias) |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if self.drop_prob == 0 or not self.training: |
|
return x |
|
keep_prob = 1 - self.drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and self.scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
def extra_repr(self): |
|
return f"drop_prob={self.drop_prob:0.3f}" |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: Optional[int] = None, |
|
out_features: Optional[int] = None, |
|
act_layer: Callable[[], nn.Module] = nn.GELU, |
|
drop: float = 0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) if drop > 0.0 else nn.Identity() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
fused_attn: Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_scale: Optional[float] = None, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = qk_scale or self.head_dim**-0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) if attn_drop > 0.0 else nn.Identity() |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
B, N, C = x.shape |
|
qkv: Tensor = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.fused_attn: |
|
dropout_p = getattr(self.attn_drop, "p", 0.0) if self.training else 0.0 |
|
x = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = False, |
|
drop: float = 0.0, |
|
attn_drop: float = 0.0, |
|
drop_path: float = 0.0, |
|
act_layer: Callable[[], nn.Module] = nn.GELU, |
|
norm_layer: Callable[[], nn.Module] = nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
img_size: int | tuple[int, int] = 224, |
|
patch_size: int | tuple[int, int] = 16, |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
bias: bool = True, |
|
dynamic_pad: bool = False, |
|
): |
|
super().__init__() |
|
self.img_size = ensure_tuple(img_size) |
|
self.patch_size = ensure_tuple(patch_size) |
|
self.num_patches = (img_size // patch_size) ** 2 |
|
|
|
self.dynamic_pad = dynamic_pad |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
_, _, H, W = x.shape |
|
if self.dynamic_pad: |
|
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] |
|
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] |
|
x = F.pad(x, (0, pad_w, 0, pad_h)) |
|
x = self.proj(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
"""Vision Transformer""" |
|
|
|
def __init__( |
|
self, |
|
img_size: int | tuple[int, int] = 224, |
|
patch_size: int | tuple[int, int] = 16, |
|
in_chans: int = 3, |
|
num_classes: int = 0, |
|
embed_dim: int = 768, |
|
depth: int = 12, |
|
num_heads: int = 12, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = False, |
|
pre_norm: bool = False, |
|
drop_rate: float = 0.0, |
|
attn_drop_rate: float = 0.0, |
|
drop_path_rate: float = 0.0, |
|
norm_layer: Callable[[], nn.Module] = nn.LayerNorm, |
|
act_layer: Callable[[], nn.Module] = nn.GELU, |
|
skip_init: bool = False, |
|
dynamic_pad: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
self.depth = depth |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
bias=not pre_norm, |
|
dynamic_pad=dynamic_pad, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
embed_len = num_patches + 1 |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, embed_len, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) if drop_rate > 0.0 else nn.Identity() |
|
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] |
|
self.blocks: list[Block] = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(self.depth) |
|
] |
|
) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
if not skip_init: |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.trunc_normal_(self.cls_token, std=0.02) |
|
nn.init.trunc_normal_(self.pos_embed, std=0.02) |
|
self.apply(vit_weights_init) |
|
|
|
def interpolate_pos_encoding(self, x: Tensor, w: Tensor, h: Tensor) -> Tensor: |
|
npatch = x.shape[1] - 1 |
|
N = self.pos_embed.shape[1] - 1 |
|
if npatch == N and w == h: |
|
return self.pos_embed |
|
class_pos_embed = self.pos_embed[:, 0] |
|
patch_pos_embed = self.pos_embed[:, 1:] |
|
dim = x.shape[-1] |
|
w0 = w // self.patch_embed.patch_size[0] |
|
h0 = h // self.patch_embed.patch_size[0] |
|
|
|
|
|
w0, h0 = w0 + 0.1, h0 + 0.1 |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), |
|
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), |
|
mode="bicubic", |
|
) |
|
if int(w0) != patch_pos_embed.shape[-2] or int(h0) != patch_pos_embed.shape[-1]: |
|
raise ValueError("Error in positional encoding interpolation.") |
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) |
|
|
|
def prepare_tokens(self, x: Tensor) -> Tensor: |
|
B, _, W, H = x.shape |
|
x = self.patch_embed(x) |
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
x = x + self.interpolate_pos_encoding(x, W, H) |
|
|
|
return self.pos_drop(x) |
|
|
|
def forward(self, x: Tensor, norm: bool = True) -> Tensor: |
|
x = self.forward_features(x, norm=norm) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
def forward_features(self, x: Tensor, norm: bool = True) -> Tensor: |
|
x = self.prepare_tokens(x) |
|
x = self.norm_pre(x) |
|
for blk in self.blocks: |
|
x = blk(x) |
|
if norm: |
|
x = self.norm(x) |
|
return x[:, 0] |
|
|
|
def forward_head(self, x: Tensor) -> Tensor: |
|
x = self.head(x) |
|
return x |
|
|
|
def get_intermediate_layers( |
|
self, |
|
x: Tensor, |
|
n: int | Sequence[int] = 1, |
|
norm: bool = True, |
|
) -> list[Tensor]: |
|
|
|
outputs = [] |
|
layer_indices = set(range(self.depth - n, self.depth) if isinstance(n, int) else n) |
|
x = self.prepare_tokens(x) |
|
x = self.norm_pre(x) |
|
|
|
for idx, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if idx in layer_indices: |
|
outputs.append(x) |
|
if norm: |
|
outputs = [self.norm(x) for x in outputs] |
|
return outputs |
|
|
|
|
|
def vit_base_dreamsim( |
|
patch_size: int = 16, |
|
layer_norm_eps: float = 1e-6, |
|
num_classes: int = 512, |
|
act_layer: str | Callable[[], nn.Module] = "gelu", |
|
**kwargs, |
|
): |
|
if isinstance(act_layer, str): |
|
act_layer = get_act_layer(act_layer) |
|
|
|
model = VisionTransformer( |
|
patch_size=patch_size, |
|
num_classes=num_classes, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=layer_norm_eps), |
|
act_layer=act_layer, |
|
**kwargs, |
|
) |
|
return model |
|
|