change dreamsim class hierarchy a bit
Browse files- __init__.py +3 -2
- model.py +55 -40
- vit.py +3 -3
__init__.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
from .model import DreamsimEnsemble, DreamsimModel
|
2 |
from .vit import VisionTransformer, vit_base_dreamsim
|
3 |
|
4 |
__all__ = [
|
5 |
-
"
|
6 |
"DreamsimEnsemble",
|
|
|
7 |
"VisionTransformer",
|
8 |
"vit_base_dreamsim",
|
9 |
]
|
|
|
1 |
+
from .model import DreamsimBackbone, DreamsimEnsemble, DreamsimModel
|
2 |
from .vit import VisionTransformer, vit_base_dreamsim
|
3 |
|
4 |
__all__ = [
|
5 |
+
"DreamsimBackbone",
|
6 |
"DreamsimEnsemble",
|
7 |
+
"DreamsimModel",
|
8 |
"VisionTransformer",
|
9 |
"vit_base_dreamsim",
|
10 |
]
|
model.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
3 |
from diffusers.models.modeling_utils import ModelMixin
|
@@ -9,7 +11,31 @@ from .common import ensure_tuple
|
|
9 |
from .vit import VisionTransformer, vit_base_dreamsim
|
10 |
|
11 |
|
12 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@register_to_config
|
14 |
def __init__(
|
15 |
self,
|
@@ -25,7 +51,7 @@ class DreamsimModel(ModelMixin, ConfigMixin):
|
|
25 |
super().__init__()
|
26 |
|
27 |
self.image_size = ensure_tuple(image_size, 2)
|
28 |
-
self.patch_size = patch_size
|
29 |
self.layer_norm_eps = layer_norm_eps
|
30 |
self.pre_norm = pre_norm
|
31 |
self.do_resize = do_resize
|
@@ -49,6 +75,12 @@ class DreamsimModel(ModelMixin, ConfigMixin):
|
|
49 |
)
|
50 |
self.img_norm = T.Normalize(mean=self.img_mean, std=self.img_std)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def transforms(self, x: Tensor) -> Tensor:
|
53 |
if self.do_resize:
|
54 |
x = self.resize(x)
|
@@ -60,42 +92,29 @@ class DreamsimModel(ModelMixin, ConfigMixin):
|
|
60 |
x = self.transforms(x)
|
61 |
x = self.extractor.forward(x, norm=self.pre_norm)
|
62 |
|
63 |
-
x.
|
64 |
-
x.
|
65 |
return x
|
66 |
|
67 |
-
def forward(self, x: Tensor) -> Tensor:
|
68 |
-
"""Dreamsim forward pass for similarity computation.
|
69 |
-
Args:
|
70 |
-
x (Tensor): Input tensor of shape [2, B, 3, H, W].
|
71 |
|
72 |
-
|
73 |
-
sim (torch.Tensor): dreamsim similarity score of shape [B].
|
74 |
-
"""
|
75 |
-
all_images = x.view(-1, 3, *x.shape[-2:])
|
76 |
-
|
77 |
-
x = self.forward_features(all_images)
|
78 |
-
x = x.view(*x.shape[:2], -1)
|
79 |
-
|
80 |
-
return 1 - F.cosine_similarity(x[0], x[1], dim=1)
|
81 |
-
|
82 |
-
|
83 |
-
class DreamsimEnsemble(ModelMixin, ConfigMixin):
|
84 |
@register_to_config
|
85 |
def __init__(
|
86 |
self,
|
87 |
image_size: int = 224,
|
88 |
patch_size: int = 16,
|
89 |
layer_norm_eps: float | tuple[float, ...] = (1e-6, 1e-5, 1e-5),
|
90 |
-
num_classes: tuple[int,
|
91 |
do_resize: bool = False,
|
92 |
) -> None:
|
93 |
super().__init__()
|
94 |
if isinstance(layer_norm_eps, float):
|
95 |
layer_norm_eps = (layer_norm_eps,) * 3
|
|
|
|
|
96 |
|
97 |
self.image_size = ensure_tuple(image_size, 2)
|
98 |
-
self.patch_size = patch_size
|
99 |
self.do_resize = do_resize
|
100 |
|
101 |
self.dino: VisionTransformer = vit_base_dreamsim(
|
@@ -137,10 +156,21 @@ class DreamsimEnsemble(ModelMixin, ConfigMixin):
|
|
137 |
std=(0.26862954, 0.26130258, 0.27577711),
|
138 |
)
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
def transforms(self, x: Tensor, resize: bool = False) -> tuple[Tensor, Tensor, Tensor]:
|
141 |
if resize:
|
142 |
x = self.resize(x)
|
143 |
-
|
|
|
144 |
|
145 |
def forward_features(self, x: Tensor) -> Tensor:
|
146 |
if x.ndim == 3:
|
@@ -153,21 +183,6 @@ class DreamsimEnsemble(ModelMixin, ConfigMixin):
|
|
153 |
x_clip2 = self.clip2.forward(x_clip2, norm=True)
|
154 |
|
155 |
z: Tensor = torch.cat([x_dino, x_clip1, x_clip2], dim=1)
|
156 |
-
z.
|
157 |
-
z.
|
158 |
return z
|
159 |
-
|
160 |
-
def forward(self, x: Tensor) -> Tensor:
|
161 |
-
"""Dreamsim forward pass for similarity computation.
|
162 |
-
Args:
|
163 |
-
x (Tensor): Input tensor of shape [2, B, 3, H, W].
|
164 |
-
|
165 |
-
Returns:
|
166 |
-
sim (torch.Tensor): dreamsim similarity score of shape [B].
|
167 |
-
"""
|
168 |
-
all_images = x.view(-1, 3, *x.shape[-2:])
|
169 |
-
|
170 |
-
x = self.forward_features(all_images)
|
171 |
-
x = x.view(*x.shape[:2], -1)
|
172 |
-
|
173 |
-
return 1 - F.cosine_similarity(x[0], x[1], dim=1)
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
|
3 |
import torch
|
4 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
5 |
from diffusers.models.modeling_utils import ModelMixin
|
|
|
11 |
from .vit import VisionTransformer, vit_base_dreamsim
|
12 |
|
13 |
|
14 |
+
class DreamsimBackbone(ModelMixin, ConfigMixin):
|
15 |
+
@abstractmethod
|
16 |
+
def forward_features(self, x: Tensor) -> Tensor:
|
17 |
+
raise NotImplementedError("abstract base class was called ;_;")
|
18 |
+
|
19 |
+
def forward(self, x: Tensor) -> Tensor:
|
20 |
+
"""Dreamsim forward pass for similarity computation.
|
21 |
+
Args:
|
22 |
+
x (Tensor): Input tensor of shape [2, B, 3, H, W].
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
sim (torch.Tensor): dreamsim similarity score of shape [B].
|
26 |
+
"""
|
27 |
+
inputs = x.view(-1, 3, *x.shape[-2:])
|
28 |
+
|
29 |
+
x = self.forward_features(inputs).view(*x.shape[:2], -1)
|
30 |
+
|
31 |
+
return 1 - F.cosine_similarity(x[0], x[1], dim=1)
|
32 |
+
|
33 |
+
def compile(self, *args, **kwargs):
|
34 |
+
"""Compile the model with Inductor. This is a no-op unless overridden by a subclass."""
|
35 |
+
return self
|
36 |
+
|
37 |
+
|
38 |
+
class DreamsimModel(DreamsimBackbone):
|
39 |
@register_to_config
|
40 |
def __init__(
|
41 |
self,
|
|
|
51 |
super().__init__()
|
52 |
|
53 |
self.image_size = ensure_tuple(image_size, 2)
|
54 |
+
self.patch_size = ensure_tuple(patch_size, 2)
|
55 |
self.layer_norm_eps = layer_norm_eps
|
56 |
self.pre_norm = pre_norm
|
57 |
self.do_resize = do_resize
|
|
|
75 |
)
|
76 |
self.img_norm = T.Normalize(mean=self.img_mean, std=self.img_std)
|
77 |
|
78 |
+
def compile(self, *, mode: str = "reduce-overhead", force: bool = False, **kwargs):
|
79 |
+
if (not self._compiled) or force:
|
80 |
+
self.extractor = torch.compile(self.extractor, mode=mode, **kwargs)
|
81 |
+
self._compiled = True
|
82 |
+
return self
|
83 |
+
|
84 |
def transforms(self, x: Tensor) -> Tensor:
|
85 |
if self.do_resize:
|
86 |
x = self.resize(x)
|
|
|
92 |
x = self.transforms(x)
|
93 |
x = self.extractor.forward(x, norm=self.pre_norm)
|
94 |
|
95 |
+
x = x.div(x.norm(dim=1, keepdim=True))
|
96 |
+
x = x.sub(x.mean(dim=1, keepdim=True))
|
97 |
return x
|
98 |
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
class DreamsimEnsemble(DreamsimBackbone):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
@register_to_config
|
102 |
def __init__(
|
103 |
self,
|
104 |
image_size: int = 224,
|
105 |
patch_size: int = 16,
|
106 |
layer_norm_eps: float | tuple[float, ...] = (1e-6, 1e-5, 1e-5),
|
107 |
+
num_classes: int | tuple[int, ...] = (0, 512, 512),
|
108 |
do_resize: bool = False,
|
109 |
) -> None:
|
110 |
super().__init__()
|
111 |
if isinstance(layer_norm_eps, float):
|
112 |
layer_norm_eps = (layer_norm_eps,) * 3
|
113 |
+
if isinstance(num_classes, int):
|
114 |
+
num_classes = (num_classes,) * 3
|
115 |
|
116 |
self.image_size = ensure_tuple(image_size, 2)
|
117 |
+
self.patch_size = ensure_tuple(patch_size, 2)
|
118 |
self.do_resize = do_resize
|
119 |
|
120 |
self.dino: VisionTransformer = vit_base_dreamsim(
|
|
|
156 |
std=(0.26862954, 0.26130258, 0.27577711),
|
157 |
)
|
158 |
|
159 |
+
self._compiled = False
|
160 |
+
|
161 |
+
def compile(self, *, mode: str = "reduce-overhead", force: bool = False, **kwargs):
|
162 |
+
if (not self._compiled) or force:
|
163 |
+
self.dino = torch.compile(self.dino, mode=mode, **kwargs)
|
164 |
+
self.clip1 = torch.compile(self.clip1, mode=mode, **kwargs)
|
165 |
+
self.clip2 = torch.compile(self.clip2, mode=mode, **kwargs)
|
166 |
+
self._compiled = True
|
167 |
+
return self
|
168 |
+
|
169 |
def transforms(self, x: Tensor, resize: bool = False) -> tuple[Tensor, Tensor, Tensor]:
|
170 |
if resize:
|
171 |
x = self.resize(x)
|
172 |
+
x = self.dino_norm(x), self.clip_norm(x), self.clip_norm(x)
|
173 |
+
return x
|
174 |
|
175 |
def forward_features(self, x: Tensor) -> Tensor:
|
176 |
if x.ndim == 3:
|
|
|
183 |
x_clip2 = self.clip2.forward(x_clip2, norm=True)
|
184 |
|
185 |
z: Tensor = torch.cat([x_dino, x_clip1, x_clip2], dim=1)
|
186 |
+
z = z.div(z.norm(dim=1, keepdim=True))
|
187 |
+
z = z.sub(z.mean(dim=1, keepdim=True))
|
188 |
return z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vit.py
CHANGED
@@ -179,9 +179,9 @@ class PatchEmbed(nn.Module):
|
|
179 |
dynamic_pad: bool = False,
|
180 |
):
|
181 |
super().__init__()
|
182 |
-
self.img_size = ensure_tuple(img_size)
|
183 |
-
self.patch_size = ensure_tuple(patch_size)
|
184 |
-
self.num_patches = (img_size // patch_size)
|
185 |
|
186 |
self.dynamic_pad = dynamic_pad
|
187 |
|
|
|
179 |
dynamic_pad: bool = False,
|
180 |
):
|
181 |
super().__init__()
|
182 |
+
self.img_size = ensure_tuple(img_size, 2)
|
183 |
+
self.patch_size = ensure_tuple(patch_size, 2)
|
184 |
+
self.num_patches = (self.img_size[0] // self.patch_size[0]) * (self.img_size[1] // self.patch_size[1])
|
185 |
|
186 |
self.dynamic_pad = dynamic_pad
|
187 |
|