# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mostly copy-paste from timm library. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ import math from functools import partial from typing import Callable, Final, Optional, Sequence import torch from torch import Tensor, nn from torch.nn import functional as F from .common import ensure_tuple, get_act_layer, use_fused_attn def vit_weights_init(module: nn.Module) -> None: if isinstance(module, nn.Linear): nn.init.trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x: Tensor) -> Tensor: if self.drop_prob == 0 or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and self.scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor def extra_repr(self): return f"drop_prob={self.drop_prob:0.3f}" class Mlp(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[[], nn.Module] = nn.GELU, drop: float = 0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) if drop > 0.0 else nn.Identity() def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_scale: Optional[float] = None, attn_drop: float = 0.0, proj_drop: float = 0.0, ): super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = qk_scale or self.head_dim**-0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) if attn_drop > 0.0 else nn.Identity() self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity() def forward(self, x: Tensor) -> Tensor: B, N, C = x.shape qkv: Tensor = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) if self.fused_attn: dropout_p = getattr(self.attn_drop, "p", 0.0) if self.training else 0.0 x = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, drop: float = 0.0, attn_drop: float = 0.0, drop_path: float = 0.0, act_layer: Callable[[], nn.Module] = nn.GELU, norm_layer: Callable[[], nn.Module] = nn.LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) def forward(self, x: Tensor) -> Tensor: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size: int | tuple[int, int] = 224, patch_size: int | tuple[int, int] = 16, in_chans: int = 3, embed_dim: int = 768, bias: bool = True, dynamic_pad: bool = False, ): super().__init__() self.img_size = ensure_tuple(img_size) self.patch_size = ensure_tuple(patch_size) self.num_patches = (img_size // patch_size) ** 2 self.dynamic_pad = dynamic_pad self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) def forward(self, x: Tensor) -> Tensor: _, _, H, W = x.shape if self.dynamic_pad: pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] x = F.pad(x, (0, pad_w, 0, pad_h)) x = self.proj(x) x = x.flatten(2).transpose(1, 2) # NCHW -> NLC return x class VisionTransformer(nn.Module): """Vision Transformer""" def __init__( self, img_size: int | tuple[int, int] = 224, patch_size: int | tuple[int, int] = 16, in_chans: int = 3, num_classes: int = 0, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, qkv_bias: bool = False, pre_norm: bool = False, drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: Callable[[], nn.Module] = nn.LayerNorm, act_layer: Callable[[], nn.Module] = nn.GELU, skip_init: bool = False, dynamic_pad: bool = False, **kwargs, ): super().__init__() self.img_size = img_size self.patch_size = patch_size self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.depth = depth self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) dynamic_pad=dynamic_pad, ) num_patches = self.patch_embed.num_patches embed_len = num_patches + 1 # num_patches + 1 for the [CLS] token self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, embed_len, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if drop_rate > 0.0 else nn.Identity() self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] # stochastic depth decay rule self.blocks: list[Block] = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], act_layer=act_layer, norm_layer=norm_layer, ) for i in range(self.depth) ] ) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if not skip_init: self.reset_parameters() def reset_parameters(self): nn.init.trunc_normal_(self.cls_token, std=0.02) nn.init.trunc_normal_(self.pos_embed, std=0.02) self.apply(vit_weights_init) def interpolate_pos_encoding(self, x: Tensor, w: Tensor, h: Tensor) -> Tensor: npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size[0] h0 = h // self.patch_embed.patch_size[0] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode="bicubic", ) if int(w0) != patch_pos_embed.shape[-2] or int(h0) != patch_pos_embed.shape[-1]: raise ValueError("Error in positional encoding interpolation.") patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def prepare_tokens(self, x: Tensor) -> Tensor: B, _, W, H = x.shape x = self.patch_embed(x) # patch linear embedding # add the [CLS] token to the embed patch tokens cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, W, H) return self.pos_drop(x) def forward(self, x: Tensor, norm: bool = True) -> Tensor: x = self.forward_features(x, norm=norm) x = self.forward_head(x) return x def forward_features(self, x: Tensor, norm: bool = True) -> Tensor: x = self.prepare_tokens(x) x = self.norm_pre(x) for blk in self.blocks: x = blk(x) if norm: x = self.norm(x) return x[:, 0] def forward_head(self, x: Tensor) -> Tensor: x = self.head(x) return x def get_intermediate_layers( self, x: Tensor, n: int | Sequence[int] = 1, norm: bool = True, ) -> list[Tensor]: # we return the output tokens from the `n` last blocks outputs = [] layer_indices = set(range(self.depth - n, self.depth) if isinstance(n, int) else n) x = self.prepare_tokens(x) x = self.norm_pre(x) for idx, blk in enumerate(self.blocks): x = blk(x) if idx in layer_indices: outputs.append(x) if norm: outputs = [self.norm(x) for x in outputs] return outputs def vit_base_dreamsim( patch_size: int = 16, layer_norm_eps: float = 1e-6, num_classes: int = 512, act_layer: str | Callable[[], nn.Module] = "gelu", **kwargs, ): if isinstance(act_layer, str): act_layer = get_act_layer(act_layer) model = VisionTransformer( patch_size=patch_size, num_classes=num_classes, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=layer_norm_eps), act_layer=act_layer, **kwargs, ) return model