--- license: other license_name: deepseek license_link: >- https://raw.githubusercontent.com/deepseek-ai/DeepSeek-Coder/main/LICENSE-MODEL datasets: - nllg/datikz-v2 --- # Model Card for DeTi*k*Zify-DS1.3b DeTi*k*Zify-DS1.3b is a language model that automatically converts sketches and existing scientific figures into editable, semantics-preserving Ti*k*Z graphics programs. It is based on [DeepSeek Coder 1.3b](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) and was fine-tuned on [DaTi*k*Zv2](https://huggingface.co/datasets/nllg/datikz-v2). Check out the [DeTi*k*Zify](https://github.com/potamides/DeTikZify) project for more information and tips on how to best run the model. ## Usage ```python from operator import itemgetter from detikzify.model import load from detikzify.infer import DetikzifyPipeline import torch image = "https://w.wiki/A7Cc" pipeline = DetikzifyPipeline(*load( base_model="nllg/detikzify-ds-1.3b", device_map="auto", torch_dtype=torch.bfloat16, )) # generate a single TikZ program fig = pipeline.sample(image=image) # if it compiles, rasterize it and show it if fig.is_rasterizable: fig.rasterize().show() # run MCTS for 10 minutes and generate multiple TikZ programs figs = set() for score, fig in pipeline.simulate(image=image, timeout=600): figs.add((score, fig)) # save the best TikZ program best = sorted(figs, key=itemgetter(0))[-1][1] best.save("fig.tex") ```