File size: 6,164 Bytes
5fffc24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
---
license: apache-2.0
tags:
- Solar Moe
- Solar
- Lumosia
pipeline_tag: text-generation
model-index:
- name: Lumosia-v2-MoE-4x10.7
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.39
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.45
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 68.48
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.21
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
      name: Open LLM Leaderboard
---
# Lumosia-v2-MoE-4x10.7

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/fKdOLTQNerr2fYYnWOiQD.png)

The Lumosia Series upgraded with Lumosia V2.

# What's New in Lumosia V2?

Lumosia V2 takes the original vision of being an "all-rounder" and refines it with more nuanced capabilities.

Topic/Prompt Based Approach:

Diverging from the keyword-based approach of its counterpart, Umbra.

Context and Coherence:

With a base context of 8k scrolling window and the ability to maintain coherence up to 16k.

Balanced and Versatile:

The core ethos of Lumosia V2 is balance. It's designed to be your go-to assistant.

Experimentation and User-Centric Development:

Lumosia V2 remains an experimental model, a mosaic of the best-performing Solar models, (selected based on user experience). 
This version is a testament to the idea that innovation is a journey, not a destination.

Come join the Discord:
[ConvexAI](https://discord.gg/yYqmNmg7Wj)


Template:
```
### System:

### USER:{prompt}

### Assistant:
```


Settings:
```
Temp: 1.0
min-p: 0.02-0.1
```

## Evals:

* Avg:
* ARC:
* HellaSwag:
* MMLU:
* T-QA:
* Winogrande:
* GSM8K:

## Examples:
```
Example 1:

User:

Lumosia:

```
```
Example 2:

User:

Lumosia:

```

## 🧩 Configuration

```
yaml
base_model: DopeorNope/SOLARC-M-10.7B
gate_mode: hidden
dtype: bfloat16

experts:
  - source_model: DopeorNope/SOLARC-M-10.7B
    positive_prompts:
    
    negative_prompts:

  - source_model: Sao10K/Fimbulvetr-10.7B-v1 [Updated]
    positive_prompts:
    
    negative_prompts:

  - source_model: jeonsworld/CarbonVillain-en-10.7B-v4 [Updated]
    positive_prompts:
    
    negative_prompts:

  - source_model: kyujinpy/Sakura-SOLAR-Instruct
    positive_prompts:
    
    negative_prompts:
```

## 💻 Usage

```
python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Steelskull/Lumosia-v2-MoE-4x10.7"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Lumosia-v2-MoE-4x10.7)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.75|
|AI2 Reasoning Challenge (25-Shot)|70.39|
|HellaSwag (10-Shot)              |87.87|
|MMLU (5-Shot)                    |66.45|
|TruthfulQA (0-shot)              |68.48|
|Winogrande (5-shot)              |84.21|
|GSM8k (5-shot)                   |65.13|



***

Quantization of Model [Steelskull/Lumosia-v2-MoE-4x10.7](https://huggingface.co/Steelskull/Lumosia-v2-MoE-4x10.7).
Created using [llm-quantizer](https://github.com/Nold360/llm-quantizer) Pipeline