NeMo
nvidia
jiaqiz commited on
Commit
6fc0b83
1 Parent(s): 4080170

Add files using large-upload tool

Browse files
Files changed (1) hide show
  1. README.md +215 -0
README.md CHANGED
@@ -4,3 +4,218 @@ license_name: nvidia-open-model-license
4
  license_link: >-
5
  https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
6
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  license_link: >-
5
  https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
6
  ---
7
+
8
+ ## Nemotron-4-340B-Base
9
+
10
+ [![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)[![Model size](https://img.shields.io/badge/Params-340B-green)](#model-architecture)[![Language](https://img.shields.io/badge/Language-Multilingual-green)](#datasets)
11
+
12
+
13
+
14
+ ### Model Overview:
15
+
16
+ Nemotron-4-340B-Base is a large language model (LLM) that can be used as part of a synthetic data generation pipeline to create training data that helps researchers and developers build their own LLMs; it is pre-trained for a total of 9 trillion tokens, consisting of a diverse assortment of English-based texts, 50+ natural languages and 40+ coding languages. After an initial pre-training phase of 8 trillion tokens, continuous pre-training of 1 trillion tokens was performed on top of the pre-trained model in order to improve model quality. During continuous training, we altered the data composition by using a different distribution than the one seen at the beginning of training.
17
+
18
+ Under the NVIDIA Open Model License, NVIDIA confirms:
19
+ Models are commercially usable.
20
+ You are free to create and distribute Derivative Models.
21
+ NVIDIA does not claim ownership to any outputs generated using the Models or Derivative Models
22
+
23
+
24
+ ### License:
25
+
26
+ [NVIDIA Open Model License](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf)
27
+
28
+ ### Intended use
29
+
30
+ Nemotron-4-340B-Base is a completion model intended for use in over 50+ natural and 40+ coding languages. For best performance on a given task, users are encouraged to customize the completion model using the NeMo Framework suite of customization tools including Parameter-Efficient Fine-Tuning (P-tuning, Adapters, LoRA), and SFT/Steer-LM/RLHF using [NeMo-Aligner](https://github.com/NVIDIA/NeMo-Aligner).
31
+
32
+ **Model Developer:** NVIDIA
33
+
34
+ **Model Input:** Text
35
+ **Input Format:** String
36
+ **Input Parameters:** One-Dimensional (1D)
37
+
38
+ **Model Output:** Text
39
+ **Output Format:** String
40
+ **Output Parameters:** 1D
41
+
42
+ **Model Dates:** Nemotron-4-340B-Base was trained between December 2023 and May 2024
43
+
44
+ ### Required Hardware
45
+
46
+ BF16 Inference:
47
+ - 8x H200 (1x H200 Node)
48
+ - 16x H100 (2x H100 Nodes)
49
+ - 16x A100 (2x A100 Nodes)
50
+
51
+ ### Model Architecture:
52
+
53
+ Nemotron-4-340B-Base is trained with a global batch-size of 2304, a sequence length of 4096 tokens, uses Grouped-Query Attention (GQA), and RoPE positional embeddings.
54
+
55
+ **Architecture Type:** Transformer Decoder (auto-regressive language model)
56
+
57
+ **Network Architecture:**
58
+ Nemotron-4
59
+
60
+ ### Usage
61
+
62
+ 1. We will spin up an inference server and then call the inference server in a python script. Let’s first define the python script ``call_server.py``
63
+
64
+ ```python
65
+ import requests
66
+ import json
67
+
68
+ headers = {"Content-Type": "application/json"}
69
+
70
+ def text_generation(data, ip='localhost', port=None):
71
+ resp = requests.put(f'http://{ip}:{port}/generate', data=json.dumps(data), headers=headers)
72
+ return resp.json()
73
+
74
+
75
+ def get_generation(prompt, greedy, add_BOS, token_to_gen, min_tokens, temp, top_p, top_k, repetition, batch=False):
76
+ data = {
77
+ "sentences": [prompt] if not batch else prompt,
78
+ "tokens_to_generate": int(token_to_gen),
79
+ "temperature": temp,
80
+ "add_BOS": add_BOS,
81
+ "top_k": top_k,
82
+ "top_p": top_p,
83
+ "greedy": greedy,
84
+ "all_probs": False,
85
+ "repetition_penalty": repetition,
86
+ "min_tokens_to_generate": int(min_tokens),
87
+ "end_strings": ["<|endoftext|>", "<extra_id_1>", "\x11", "<extra_id_1>User"],
88
+ }
89
+ sentences = text_generation(data, port=1424)['sentences']
90
+ return sentences[0] if not batch else sentences
91
+
92
+ PROMPT_TEMPLATE = "{prompt}"
93
+
94
+ question = "Write a poem on NVIDIA in the style of Shakespeare"
95
+ prompt = PROMPT_TEMPLATE.format(prompt=question)
96
+ print(prompt)
97
+
98
+ response = get_generation(prompt, greedy=True, add_BOS=False, token_to_gen=1024, min_tokens=1, temp=1.0, top_p=1.0, top_k=0, repetition=1.0, batch=False)
99
+ response = response[len(prompt):]
100
+ print(response)
101
+ ```
102
+
103
+
104
+ 2. Given this python script, we will create a bash script, which spins up the inference server within the NeMo container(docker pull nvcr.io/nvidia/nemo:24.01.framework) and calls the python script ``call_server.py``. The bash script ``nemo_inference.sh`` is as follows,
105
+
106
+
107
+ ```bash
108
+ NEMO_FILE=$1
109
+ WEB_PORT=1424
110
+
111
+ depends_on () {
112
+ HOST=$1
113
+ PORT=$2
114
+ STATUS=$(curl -X PUT http://$HOST:$PORT >/dev/null 2>/dev/null; echo $?)
115
+ while [ $STATUS -ne 0 ]
116
+ do
117
+ echo "waiting for server ($HOST:$PORT) to be up"
118
+ sleep 10
119
+ STATUS=$(curl -X PUT http://$HOST:$PORT >/dev/null 2>/dev/null; echo $?)
120
+ done
121
+ echo "server ($HOST:$PORT) is up running"
122
+ }
123
+
124
+
125
+ /usr/bin/python3 /opt/NeMo/examples/nlp/language_modeling/megatron_gpt_eval.py \
126
+ gpt_model_file=$NEMO_FILE \
127
+ pipeline_model_parallel_split_rank=0 \
128
+ server=True tensor_model_parallel_size=8 \
129
+ trainer.precision=bf16 pipeline_model_parallel_size=2 \
130
+ trainer.devices=8 \
131
+ trainer.num_nodes=2 \
132
+ web_server=False \
133
+ port=${WEB_PORT} &
134
+ SERVER_PID=$!
135
+
136
+ readonly local_rank="${LOCAL_RANK:=${SLURM_LOCALID:=${OMPI_COMM_WORLD_LOCAL_RANK:-}}}"
137
+ if [ $SLURM_NODEID -eq 0 ] && [ $local_rank -eq 0 ]; then
138
+ depends_on "0.0.0.0" ${WEB_PORT}
139
+
140
+ echo "start get json"
141
+ sleep 5
142
+
143
+ echo "SLURM_NODEID: $SLURM_NODEID"
144
+ echo "local_rank: $local_rank"
145
+ /usr/bin/python3 /scripts/call_server.py
146
+ echo "clean up dameons: $$"
147
+ kill -9 $SERVER_PID
148
+ pkill python
149
+ fi
150
+ wait
151
+ ```
152
+
153
+
154
+ 3, We can launch the ``nemo_inferece.sh`` with a slurm script defined like below, which starts a 2-node job for the model inference.
155
+
156
+ ```bash
157
+ #!/bin/bash
158
+ #SBATCH -A SLURM-ACCOUNT
159
+ #SBATCH -p SLURM-PARITION
160
+ #SBATCH -N 2 # number of nodes
161
+ #SBATCH -J generation
162
+ #SBATCH --ntasks-per-node=8
163
+ #SBATCH --gpus-per-node=8
164
+ set -x
165
+
166
+ RESULTS=<PATH_TO_YOUR_SCRIPTS_FOLDER>
167
+ OUTFILE="${RESULTS}/slurm-%j-%n.out"
168
+ ERRFILE="${RESULTS}/error-%j-%n.out"
169
+ MODEL=<PATH_TO>/Nemotron-4-340B-Base
170
+
171
+ MOUNTS="--container-mounts=<PATH_TO_YOUR_SCRIPTS_FOLDER>:/scripts,MODEL:/model"
172
+ read -r -d '' cmd <<EOF
173
+ bash /scripts/nemo_inference.sh /model
174
+ EOF
175
+
176
+ srun -o $OUTFILE -e $ERRFILE --container-image="$CONTAINER" $MOUNTS bash -c "${cmd}"
177
+ ```
178
+
179
+
180
+
181
+
182
+
183
+ ### Dataset & Training
184
+
185
+ The training corpus for Nemotron-4-340B-Base consists of English and multilingual text, as well as code. Our English sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including legal, math, science, finance, and more. In our continued training set, we introduce a small portion of question-answering, alignment style data to improve model performance.
186
+
187
+ **Data Freshness:** The pretraining data has a cutoff of June 2023
188
+
189
+ ### Evaluation Results
190
+
191
+ #### Overview
192
+
193
+
194
+
195
+ *5-shot performance.* Language Understanding evaluated using [Massive Multitask Language Understanding](https://arxiv.org/abs/2009.03300):
196
+ | Average |
197
+ | ------------- |
198
+ | 81.1 |
199
+
200
+ *Zero-shot performance.* Evaluated using select datasets from the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) with additions:
201
+ | HellaSwag | Winogrande | BBH| ARC-Challenge |
202
+ | ------------- | ------------- | ------------- | ------------- |
203
+ | 90.53 | 89.50 | 85.44 | 94.28 |
204
+
205
+ *Chain of Thought (CoT)*. Multilingual capabilities evaluated using [Multilingual Grade School Math](https://arxiv.org/abs/2210.03057):
206
+ | ES Exact Match (%) | JA Exact Match (%) | TH Exact Match (%) |
207
+ | ------------- | ------------- | ------------- |
208
+ | 68.8 | 69.6 | 68.4 |
209
+
210
+ *Code generation performance*. Evaluated using [HumanEval](https://github.com/openai/human-eval):
211
+ | p@1, 0-Shot |
212
+ | ------------- |
213
+ | 57.3 |
214
+
215
+ ### Limitations
216
+
217
+ The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
218
+
219
+ ### Ethical Considerations
220
+
221
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [Insert Link to Model Card++ here]. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).