osanseviero
commited on
Commit
•
027a6f3
1
Parent(s):
9eb2e43
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -97.87 +/- 143.38
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff335501680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff335501710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3355017a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff335501830>", "_build": "<function ActorCriticPolicy._build at 0x7ff3355018c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff335501950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3355019e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff335501a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff335501b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff335501b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff335501c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff335556450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651657579.867896, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAL0MrD7EgGo/tnBsP/exS79Dhuu+TMvKvgAAAAAAAAAA3enzPgpfhT+c/UE/8l4kv/kfqr6d4Xi+AAAAAAAAAADlbQw/T/NSPXbO47xsTha7MtkwvdTBi7wAAIA/AACAP0M9kr6AU68/3CkVv3a7Fb9CpLM+DlohvQAAAAAAAAAA6k4xP713djyTw20/XS0Mv7rDpL9xIa3AAACAPwAAAABQAwC/J+pWP8osK78m5Ie/jUPoPaVkJr4AAAAAAAAAAGYfaT7R8aA/qQ0WP4YI276d8YW+82sRvgAAAAAAAAAAQ9l7vgzxkT9mk1C/O/wev+Z3uD7Ggoo+AAAAAAAAAAAtrHc++rfMPw6ITz9J7/s9abBwvWkOrj0AAAAAAAAAAI1qgz3aiYE/2v6iPjembb/rCJq9ZWNVvgAAAAAAAAAAEkf3vrN3iD/Gl0e/59JUv8PG5T5Hjkk+AAAAAAAAAABgOWw+5XeCPyH5GT9BmDe/ZgsAv7ANd74AAAAAAAAAAKYwx70hdZg/7iA4v4ppW7+H3Vg9erAJPgAAAAAAAAAArQM5vpmDtz9m/eC+6vHCvgFmlT0tOiu9AAAAAAAAAACNUbe9hgdfP9q2pb4+S3u/bRFzPpZ4Tz4AAAAAAAAAAE3B3L3impk/WP0Kv2dyE7/n/tc9xFWTPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8z6O5kjncMCUhpRSlIwBbJRLX4wBdJRHQBGutnwob4t1fZQoaAZoCWgPQwh8fhghPHFgwJSGlFKUaBVLZmgWR0ARvp+tr9EUdX2UKGgGaAloD0MIjURoBBsTXMCUhpRSlGgVS2FoFkdAEkKJ2t+1B3V9lChoBmgJaA9DCORmuAGfFWbAlIaUUpRoFUtlaBZHQBJNb5dnkDJ1fZQoaAZoCWgPQwgpPGh2XTlqwJSGlFKUaBVLSmgWR0ASZNBWxQizdX2UKGgGaAloD0MIF2cMc4IMUcCUhpRSlGgVS0VoFkdAEozC1qnFYXV9lChoBmgJaA9DCM3Ji0xAm3PAlIaUUpRoFUtiaBZHQBL8kY4yXUp1fZQoaAZoCWgPQwjHDipxnVBzwJSGlFKUaBVLcWgWR0ATAAsCkoF3dX2UKGgGaAloD0MIyJqRQe4vb8CUhpRSlGgVSztoFkdAEysyzollb3V9lChoBmgJaA9DCFe1pKOcw2LAlIaUUpRoFUtPaBZHQBOAzk6tDD11fZQoaAZoCWgPQwjGMZI9QqNhwJSGlFKUaBVLd2gWR0ATq4oZydWidX2UKGgGaAloD0MIa2EW2jmZXsCUhpRSlGgVS35oFkdAE+yvcJtzjnV9lChoBmgJaA9DCBTLLa0GbnvAlIaUUpRoFUtZaBZHQBPx8lXzUZx1fZQoaAZoCWgPQwhaZhGKrVNpwJSGlFKUaBVLW2gWR0AUG9K28Zk1dX2UKGgGaAloD0MIHSJuTiUNTMCUhpRSlGgVS0hoFkdAFC6FuejEenV9lChoBmgJaA9DCCqr6XriYHfAlIaUUpRoFUuNaBZHQBSGFev6j351fZQoaAZoCWgPQwiqgHuef7l0wJSGlFKUaBVLVWgWR0AUqKZUkv9MdX2UKGgGaAloD0MItW/urx7oWcCUhpRSlGgVS39oFkdAFLP6sQumJnV9lChoBmgJaA9DCNRDNLqDlGPAlIaUUpRoFUtUaBZHQBTOwcHWz4V1fZQoaAZoCWgPQwj60tufCxJlwJSGlFKUaBVLbWgWR0AVNDiOvMbFdX2UKGgGaAloD0MIDcFxGTe+XMCUhpRSlGgVS0toFkdAFTBMzuWrwXV9lChoBmgJaA9DCIxK6gQ041PAlIaUUpRoFUthaBZHQBWcFY+0PYp1fZQoaAZoCWgPQwiIDoEjwVV1wJSGlFKUaBVLTmgWR0AV6/XXiBGydX2UKGgGaAloD0MI5Lop5bWtYsCUhpRSlGgVS1hoFkdAFhA3kxREW3V9lChoBmgJaA9DCLu5+Nseq2rAlIaUUpRoFUtTaBZHQBZfbfxc3VF1fZQoaAZoCWgPQwhevYqMDkRVwJSGlFKUaBVLgGgWR0AWwVqN6w+udX2UKGgGaAloD0MIlBYuqzCsZMCUhpRSlGgVS11oFkdAFu9du5z5oHV9lChoBmgJaA9DCOzdH+9VtVzAlIaUUpRoFUtKaBZHQBb/zSThYNl1fZQoaAZoCWgPQwgCKEaWTGRmwJSGlFKUaBVLY2gWR0AXMi0OVgQZdX2UKGgGaAloD0MIZDvfT40fNECUhpRSlGgVS1hoFkdAF0VdX1anrXV9lChoBmgJaA9DCOAu+3UnPm7AlIaUUpRoFUtyaBZHQBdhc3VCojx1fZQoaAZoCWgPQwi3skRnmTNewJSGlFKUaBVLWGgWR0AXdg7YChexdX2UKGgGaAloD0MIhlRRvMrxVcCUhpRSlGgVS2RoFkdAF/YywfQrtnV9lChoBmgJaA9DCMIU5dJ4EGbAlIaUUpRoFUtkaBZHQBhoJqqOtGN1fZQoaAZoCWgPQwhq96sA31RpwJSGlFKUaBVLZ2gWR0AYeqebutwKdX2UKGgGaAloD0MICFkWTHxRZsCUhpRSlGgVS0FoFkdAGLbxEv0yxnV9lChoBmgJaA9DCAgiizTxcmLAlIaUUpRoFUtcaBZHQBjJ7CzkZJl1fZQoaAZoCWgPQwi05VyKqxpdwJSGlFKUaBVLZmgWR0AY4qwyIpH7dX2UKGgGaAloD0MI95MxPszidcCUhpRSlGgVS2VoFkdAGSZZB9kSVXV9lChoBmgJaA9DCEXxKmubXlvAlIaUUpRoFUtRaBZHQBlYNZvDP4V1fZQoaAZoCWgPQwhx4xbzc/ZxwJSGlFKUaBVLS2gWR0AZbAtWdVebdX2UKGgGaAloD0MIAtaqXRMbXMCUhpRSlGgVS0toFkdAGZlPacqe9XV9lChoBmgJaA9DCEwceSCyZ2PAlIaUUpRoFUttaBZHQBmtVvMr3Cd1fZQoaAZoCWgPQwjF506wfxJ0wJSGlFKUaBVLU2gWR0AZ7zbvgFX8dX2UKGgGaAloD0MIqRWm77UibsCUhpRSlGgVS0NoFkdAGfGsmv4dqHV9lChoBmgJaA9DCPePhegQFGDAlIaUUpRoFUt4aBZHQBqQjyFwkxB1fZQoaAZoCWgPQwhwYd14dxpUwJSGlFKUaBVLVGgWR0Aa3sE7nxJ/dX2UKGgGaAloD0MIwCDp0yp6acCUhpRSlGgVS3toFkdAGuwPiDM/yHV9lChoBmgJaA9DCAPtDikGmVTAlIaUUpRoFUs9aBZHQBsrvCuU2UB1fZQoaAZoCWgPQwjHZ7J/njpfwJSGlFKUaBVLXmgWR0AbizeGfwqidX2UKGgGaAloD0MInZyhuOO+UsCUhpRSlGgVS0NoFkdAG6xEfDDTB3V9lChoBmgJaA9DCPFlogip1GLAlIaUUpRoFUtraBZHQBu1TisGPgh1fZQoaAZoCWgPQwhVFRqIZVRzwJSGlFKUaBVLY2gWR0Aby4Bmwqy4dX2UKGgGaAloD0MIjKIHPgaEbsCUhpRSlGgVS1BoFkdAG+ZqVQhwEXV9lChoBmgJaA9DCF3BNuKJRXrAlIaUUpRoFUtlaBZHQBv19fCyhSN1fZQoaAZoCWgPQwh5spsZ/XVbwJSGlFKUaBVLV2gWR0AcX4wh4dIYdX2UKGgGaAloD0MIB9LFphWfZsCUhpRSlGgVS3xoFkdAHPPhQ3xWk3V9lChoBmgJaA9DCGtI3GOpOXHAlIaUUpRoFUtXaBZHQB1LLQokRjB1fZQoaAZoCWgPQwg5C3vaoTBzwJSGlFKUaBVLcmgWR0AdejxkNFz/dX2UKGgGaAloD0MIpppZSwEYYcCUhpRSlGgVS0NoFkdAHasXBP9DQnV9lChoBmgJaA9DCHhi1ouhiVTAlIaUUpRoFUtRaBZHQB3H3Dej2zx1fZQoaAZoCWgPQwhLrIxGPslcwJSGlFKUaBVLWWgWR0AdyD5CWu5jdX2UKGgGaAloD0MIu+8YHrvxdcCUhpRSlGgVS3poFkdAHcePJaJQ+HV9lChoBmgJaA9DCL5PVaGB+V7AlIaUUpRoFUtCaBZHQB4TjvNNahZ1fZQoaAZoCWgPQwh97C5Q0sZiwJSGlFKUaBVLTWgWR0AeWxeLNwBHdX2UKGgGaAloD0MIEVSNXo2FYMCUhpRSlGgVS2xoFkdAHloBJZntfHV9lChoBmgJaA9DCLwhjQrc4XTAlIaUUpRoFUtXaBZHQB53l8w5/9Z1fZQoaAZoCWgPQwiMFTWYhqRawJSGlFKUaBVLXmgWR0AetGSZBsyjdX2UKGgGaAloD0MIDMwKRTrXbMCUhpRSlGgVS25oFkdAH07Gecx0uHV9lChoBmgJaA9DCJi9bDvt7nLAlIaUUpRoFUtNaBZHQB92kSElE7Z1fZQoaAZoCWgPQwjdtYR8UO5gwJSGlFKUaBVLa2gWR0Af1Rm9QGfPdX2UKGgGaAloD0MIzy10JQLKVMCUhpRSlGgVS0hoFkdAIA6jnFHavnV9lChoBmgJaA9DCHCX/brTZVrAlIaUUpRoFUtIaBZHQCA0ILPUrkN1fZQoaAZoCWgPQwiVKlH2lgNcwJSGlFKUaBVLWGgWR0AgR7ngYP5IdX2UKGgGaAloD0MIL/mf/N12W8CUhpRSlGgVS0toFkdAIGejM3ZPEnV9lChoBmgJaA9DCEq2upyS/WLAlIaUUpRoFUtCaBZHQCBzHIZIg/11fZQoaAZoCWgPQwjGvmTjQcBqwJSGlFKUaBVLaWgWR0AgemjTKDChdX2UKGgGaAloD0MIls0cktr+csCUhpRSlGgVS2JoFkdAIIHAymALA3V9lChoBmgJaA9DCNNp3Qa1LUrAlIaUUpRoFUtPaBZHQCCJq9Gqgh91fZQoaAZoCWgPQwh/pIgMKzxnwJSGlFKUaBVLd2gWR0AgnuuRs/IKdX2UKGgGaAloD0MI0UAsm/kbdcCUhpRSlGgVS2loFkdAIJ+l0o0ALnV9lChoBmgJaA9DCKcgPxs5DWfAlIaUUpRoFUtkaBZHQCDS0jTrmhd1fZQoaAZoCWgPQwjQZP88DcxTwJSGlFKUaBVLQmgWR0Ag1egL7XQMdX2UKGgGaAloD0MIFk1nJ4Ova8CUhpRSlGgVS0xoFkdAIOq1XvH933V9lChoBmgJaA9DCLCsNCmFtWDAlIaUUpRoFUtOaBZHQCE4n+hoM8Z1fZQoaAZoCWgPQwgMWkjAaLlkwJSGlFKUaBVLRWgWR0AhcuoP07KadX2UKGgGaAloD0MIml33ViSpaMCUhpRSlGgVS0NoFkdAIYnLidat93V9lChoBmgJaA9DCNcYdELof1PAlIaUUpRoFUs+aBZHQCGOLzf779B1fZQoaAZoCWgPQwi7e4Duy7VKwJSGlFKUaBVLRGgWR0AhoEs8PnSwdX2UKGgGaAloD0MIdJgvL8DedcCUhpRSlGgVS2BoFkdAIdPQ4S6DoXV9lChoBmgJaA9DCFga+FENJlnAlIaUUpRoFUtMaBZHQCHojnmq5sl1fZQoaAZoCWgPQwi5N79hon9GwJSGlFKUaBVLQ2gWR0AiD5AQg9vCdX2UKGgGaAloD0MI9x4uOe7aWsCUhpRSlGgVS0xoFkdAIh2LP2PDHnV9lChoBmgJaA9DCHb+7bKfTHnAlIaUUpRoFUtdaBZHQCIbr9l2/zt1fZQoaAZoCWgPQwg2Wg70UFN7wJSGlFKUaBVLgmgWR0AiQoQ4CIUKdX2UKGgGaAloD0MIr8+c9ansZsCUhpRSlGgVS1ZoFkdAIkx2jfvWpnV9lChoBmgJaA9DCFLt0/GYRVjAlIaUUpRoFUtlaBZHQCJUjFAE+xJ1fZQoaAZoCWgPQwg4SIjyBZtBQJSGlFKUaBVN6ANoFkdAImlQMx46fnV9lChoBmgJaA9DCIqsNZTaQWfAlIaUUpRoFUt5aBZHQCJ31e0G/vh1fZQoaAZoCWgPQwhmTMEaZ81RwJSGlFKUaBVLRGgWR0AijL7oB7u2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9d25d7a532b0c0539776dcc8073c2f041fea603f82a66d08b2dfee0aa3f3c0f
|
3 |
+
size 143513
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff335501680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff335501710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3355017a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff335501830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff3355018c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff335501950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3355019e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff335501a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff335501b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff335501b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff335501c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff335556450>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 1000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651657579.867896,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAL0MrD7EgGo/tnBsP/exS79Dhuu+TMvKvgAAAAAAAAAA3enzPgpfhT+c/UE/8l4kv/kfqr6d4Xi+AAAAAAAAAADlbQw/T/NSPXbO47xsTha7MtkwvdTBi7wAAIA/AACAP0M9kr6AU68/3CkVv3a7Fb9CpLM+DlohvQAAAAAAAAAA6k4xP713djyTw20/XS0Mv7rDpL9xIa3AAACAPwAAAABQAwC/J+pWP8osK78m5Ie/jUPoPaVkJr4AAAAAAAAAAGYfaT7R8aA/qQ0WP4YI276d8YW+82sRvgAAAAAAAAAAQ9l7vgzxkT9mk1C/O/wev+Z3uD7Ggoo+AAAAAAAAAAAtrHc++rfMPw6ITz9J7/s9abBwvWkOrj0AAAAAAAAAAI1qgz3aiYE/2v6iPjembb/rCJq9ZWNVvgAAAAAAAAAAEkf3vrN3iD/Gl0e/59JUv8PG5T5Hjkk+AAAAAAAAAABgOWw+5XeCPyH5GT9BmDe/ZgsAv7ANd74AAAAAAAAAAKYwx70hdZg/7iA4v4ppW7+H3Vg9erAJPgAAAAAAAAAArQM5vpmDtz9m/eC+6vHCvgFmlT0tOiu9AAAAAAAAAACNUbe9hgdfP9q2pb4+S3u/bRFzPpZ4Tz4AAAAAAAAAAE3B3L3impk/WP0Kv2dyE7/n/tc9xFWTPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -15.384,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8z6O5kjncMCUhpRSlIwBbJRLX4wBdJRHQBGutnwob4t1fZQoaAZoCWgPQwh8fhghPHFgwJSGlFKUaBVLZmgWR0ARvp+tr9EUdX2UKGgGaAloD0MIjURoBBsTXMCUhpRSlGgVS2FoFkdAEkKJ2t+1B3V9lChoBmgJaA9DCORmuAGfFWbAlIaUUpRoFUtlaBZHQBJNb5dnkDJ1fZQoaAZoCWgPQwgpPGh2XTlqwJSGlFKUaBVLSmgWR0ASZNBWxQizdX2UKGgGaAloD0MIF2cMc4IMUcCUhpRSlGgVS0VoFkdAEozC1qnFYXV9lChoBmgJaA9DCM3Ji0xAm3PAlIaUUpRoFUtiaBZHQBL8kY4yXUp1fZQoaAZoCWgPQwjHDipxnVBzwJSGlFKUaBVLcWgWR0ATAAsCkoF3dX2UKGgGaAloD0MIyJqRQe4vb8CUhpRSlGgVSztoFkdAEysyzollb3V9lChoBmgJaA9DCFe1pKOcw2LAlIaUUpRoFUtPaBZHQBOAzk6tDD11fZQoaAZoCWgPQwjGMZI9QqNhwJSGlFKUaBVLd2gWR0ATq4oZydWidX2UKGgGaAloD0MIa2EW2jmZXsCUhpRSlGgVS35oFkdAE+yvcJtzjnV9lChoBmgJaA9DCBTLLa0GbnvAlIaUUpRoFUtZaBZHQBPx8lXzUZx1fZQoaAZoCWgPQwhaZhGKrVNpwJSGlFKUaBVLW2gWR0AUG9K28Zk1dX2UKGgGaAloD0MIHSJuTiUNTMCUhpRSlGgVS0hoFkdAFC6FuejEenV9lChoBmgJaA9DCCqr6XriYHfAlIaUUpRoFUuNaBZHQBSGFev6j351fZQoaAZoCWgPQwiqgHuef7l0wJSGlFKUaBVLVWgWR0AUqKZUkv9MdX2UKGgGaAloD0MItW/urx7oWcCUhpRSlGgVS39oFkdAFLP6sQumJnV9lChoBmgJaA9DCNRDNLqDlGPAlIaUUpRoFUtUaBZHQBTOwcHWz4V1fZQoaAZoCWgPQwj60tufCxJlwJSGlFKUaBVLbWgWR0AVNDiOvMbFdX2UKGgGaAloD0MIDcFxGTe+XMCUhpRSlGgVS0toFkdAFTBMzuWrwXV9lChoBmgJaA9DCIxK6gQ041PAlIaUUpRoFUthaBZHQBWcFY+0PYp1fZQoaAZoCWgPQwiIDoEjwVV1wJSGlFKUaBVLTmgWR0AV6/XXiBGydX2UKGgGaAloD0MI5Lop5bWtYsCUhpRSlGgVS1hoFkdAFhA3kxREW3V9lChoBmgJaA9DCLu5+Nseq2rAlIaUUpRoFUtTaBZHQBZfbfxc3VF1fZQoaAZoCWgPQwhevYqMDkRVwJSGlFKUaBVLgGgWR0AWwVqN6w+udX2UKGgGaAloD0MIlBYuqzCsZMCUhpRSlGgVS11oFkdAFu9du5z5oHV9lChoBmgJaA9DCOzdH+9VtVzAlIaUUpRoFUtKaBZHQBb/zSThYNl1fZQoaAZoCWgPQwgCKEaWTGRmwJSGlFKUaBVLY2gWR0AXMi0OVgQZdX2UKGgGaAloD0MIZDvfT40fNECUhpRSlGgVS1hoFkdAF0VdX1anrXV9lChoBmgJaA9DCOAu+3UnPm7AlIaUUpRoFUtyaBZHQBdhc3VCojx1fZQoaAZoCWgPQwi3skRnmTNewJSGlFKUaBVLWGgWR0AXdg7YChexdX2UKGgGaAloD0MIhlRRvMrxVcCUhpRSlGgVS2RoFkdAF/YywfQrtnV9lChoBmgJaA9DCMIU5dJ4EGbAlIaUUpRoFUtkaBZHQBhoJqqOtGN1fZQoaAZoCWgPQwhq96sA31RpwJSGlFKUaBVLZ2gWR0AYeqebutwKdX2UKGgGaAloD0MICFkWTHxRZsCUhpRSlGgVS0FoFkdAGLbxEv0yxnV9lChoBmgJaA9DCAgiizTxcmLAlIaUUpRoFUtcaBZHQBjJ7CzkZJl1fZQoaAZoCWgPQwi05VyKqxpdwJSGlFKUaBVLZmgWR0AY4qwyIpH7dX2UKGgGaAloD0MI95MxPszidcCUhpRSlGgVS2VoFkdAGSZZB9kSVXV9lChoBmgJaA9DCEXxKmubXlvAlIaUUpRoFUtRaBZHQBlYNZvDP4V1fZQoaAZoCWgPQwhx4xbzc/ZxwJSGlFKUaBVLS2gWR0AZbAtWdVebdX2UKGgGaAloD0MIAtaqXRMbXMCUhpRSlGgVS0toFkdAGZlPacqe9XV9lChoBmgJaA9DCEwceSCyZ2PAlIaUUpRoFUttaBZHQBmtVvMr3Cd1fZQoaAZoCWgPQwjF506wfxJ0wJSGlFKUaBVLU2gWR0AZ7zbvgFX8dX2UKGgGaAloD0MIqRWm77UibsCUhpRSlGgVS0NoFkdAGfGsmv4dqHV9lChoBmgJaA9DCPePhegQFGDAlIaUUpRoFUt4aBZHQBqQjyFwkxB1fZQoaAZoCWgPQwhwYd14dxpUwJSGlFKUaBVLVGgWR0Aa3sE7nxJ/dX2UKGgGaAloD0MIwCDp0yp6acCUhpRSlGgVS3toFkdAGuwPiDM/yHV9lChoBmgJaA9DCAPtDikGmVTAlIaUUpRoFUs9aBZHQBsrvCuU2UB1fZQoaAZoCWgPQwjHZ7J/njpfwJSGlFKUaBVLXmgWR0AbizeGfwqidX2UKGgGaAloD0MInZyhuOO+UsCUhpRSlGgVS0NoFkdAG6xEfDDTB3V9lChoBmgJaA9DCPFlogip1GLAlIaUUpRoFUtraBZHQBu1TisGPgh1fZQoaAZoCWgPQwhVFRqIZVRzwJSGlFKUaBVLY2gWR0Aby4Bmwqy4dX2UKGgGaAloD0MIjKIHPgaEbsCUhpRSlGgVS1BoFkdAG+ZqVQhwEXV9lChoBmgJaA9DCF3BNuKJRXrAlIaUUpRoFUtlaBZHQBv19fCyhSN1fZQoaAZoCWgPQwh5spsZ/XVbwJSGlFKUaBVLV2gWR0AcX4wh4dIYdX2UKGgGaAloD0MIB9LFphWfZsCUhpRSlGgVS3xoFkdAHPPhQ3xWk3V9lChoBmgJaA9DCGtI3GOpOXHAlIaUUpRoFUtXaBZHQB1LLQokRjB1fZQoaAZoCWgPQwg5C3vaoTBzwJSGlFKUaBVLcmgWR0AdejxkNFz/dX2UKGgGaAloD0MIpppZSwEYYcCUhpRSlGgVS0NoFkdAHasXBP9DQnV9lChoBmgJaA9DCHhi1ouhiVTAlIaUUpRoFUtRaBZHQB3H3Dej2zx1fZQoaAZoCWgPQwhLrIxGPslcwJSGlFKUaBVLWWgWR0AdyD5CWu5jdX2UKGgGaAloD0MIu+8YHrvxdcCUhpRSlGgVS3poFkdAHcePJaJQ+HV9lChoBmgJaA9DCL5PVaGB+V7AlIaUUpRoFUtCaBZHQB4TjvNNahZ1fZQoaAZoCWgPQwh97C5Q0sZiwJSGlFKUaBVLTWgWR0AeWxeLNwBHdX2UKGgGaAloD0MIEVSNXo2FYMCUhpRSlGgVS2xoFkdAHloBJZntfHV9lChoBmgJaA9DCLwhjQrc4XTAlIaUUpRoFUtXaBZHQB53l8w5/9Z1fZQoaAZoCWgPQwiMFTWYhqRawJSGlFKUaBVLXmgWR0AetGSZBsyjdX2UKGgGaAloD0MIDMwKRTrXbMCUhpRSlGgVS25oFkdAH07Gecx0uHV9lChoBmgJaA9DCJi9bDvt7nLAlIaUUpRoFUtNaBZHQB92kSElE7Z1fZQoaAZoCWgPQwjdtYR8UO5gwJSGlFKUaBVLa2gWR0Af1Rm9QGfPdX2UKGgGaAloD0MIzy10JQLKVMCUhpRSlGgVS0hoFkdAIA6jnFHavnV9lChoBmgJaA9DCHCX/brTZVrAlIaUUpRoFUtIaBZHQCA0ILPUrkN1fZQoaAZoCWgPQwiVKlH2lgNcwJSGlFKUaBVLWGgWR0AgR7ngYP5IdX2UKGgGaAloD0MIL/mf/N12W8CUhpRSlGgVS0toFkdAIGejM3ZPEnV9lChoBmgJaA9DCEq2upyS/WLAlIaUUpRoFUtCaBZHQCBzHIZIg/11fZQoaAZoCWgPQwjGvmTjQcBqwJSGlFKUaBVLaWgWR0AgemjTKDChdX2UKGgGaAloD0MIls0cktr+csCUhpRSlGgVS2JoFkdAIIHAymALA3V9lChoBmgJaA9DCNNp3Qa1LUrAlIaUUpRoFUtPaBZHQCCJq9Gqgh91fZQoaAZoCWgPQwh/pIgMKzxnwJSGlFKUaBVLd2gWR0AgnuuRs/IKdX2UKGgGaAloD0MI0UAsm/kbdcCUhpRSlGgVS2loFkdAIJ+l0o0ALnV9lChoBmgJaA9DCKcgPxs5DWfAlIaUUpRoFUtkaBZHQCDS0jTrmhd1fZQoaAZoCWgPQwjQZP88DcxTwJSGlFKUaBVLQmgWR0Ag1egL7XQMdX2UKGgGaAloD0MIFk1nJ4Ova8CUhpRSlGgVS0xoFkdAIOq1XvH933V9lChoBmgJaA9DCLCsNCmFtWDAlIaUUpRoFUtOaBZHQCE4n+hoM8Z1fZQoaAZoCWgPQwgMWkjAaLlkwJSGlFKUaBVLRWgWR0AhcuoP07KadX2UKGgGaAloD0MIml33ViSpaMCUhpRSlGgVS0NoFkdAIYnLidat93V9lChoBmgJaA9DCNcYdELof1PAlIaUUpRoFUs+aBZHQCGOLzf779B1fZQoaAZoCWgPQwi7e4Duy7VKwJSGlFKUaBVLRGgWR0AhoEs8PnSwdX2UKGgGaAloD0MIdJgvL8DedcCUhpRSlGgVS2BoFkdAIdPQ4S6DoXV9lChoBmgJaA9DCFga+FENJlnAlIaUUpRoFUtMaBZHQCHojnmq5sl1fZQoaAZoCWgPQwi5N79hon9GwJSGlFKUaBVLQ2gWR0AiD5AQg9vCdX2UKGgGaAloD0MI9x4uOe7aWsCUhpRSlGgVS0xoFkdAIh2LP2PDHnV9lChoBmgJaA9DCHb+7bKfTHnAlIaUUpRoFUtdaBZHQCIbr9l2/zt1fZQoaAZoCWgPQwg2Wg70UFN7wJSGlFKUaBVLgmgWR0AiQoQ4CIUKdX2UKGgGaAloD0MIr8+c9ansZsCUhpRSlGgVS1ZoFkdAIkx2jfvWpnV9lChoBmgJaA9DCFLt0/GYRVjAlIaUUpRoFUtlaBZHQCJUjFAE+xJ1fZQoaAZoCWgPQwg4SIjyBZtBQJSGlFKUaBVN6ANoFkdAImlQMx46fnV9lChoBmgJaA9DCIqsNZTaQWfAlIaUUpRoFUt5aBZHQCJ31e0G/vh1fZQoaAZoCWgPQwhmTMEaZ81RwJSGlFKUaBVLRGgWR0AijL7oB7u2dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 4,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d03ecacaee4ef052b7e4482d3f6010bbde160440b92c4a26223f133be2ffe29e
|
3 |
+
size 84573
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d3511bfd48dff1484f785f0b02a0ac7c10f3508bf13f79c43384be7f2dfddb8
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db70178c2741e4888ad654a05ca8bc30c36a589c3570cf646e72c874aadc7884
|
3 |
+
size 258902
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -97.87258011713274, "std_reward": 143.38043582288225, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T09:46:40.154155"}
|