File size: 2,834 Bytes
895a899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: google/siglip-base-patch16-512
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: siglip-tagger-test-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# siglip-tagger-test-2

This model is a fine-tuned version of [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 364.7850
- Accuracy: 0.2539
- F1: 0.9967

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1496.9876     | 1.0   | 141  | 691.3267        | 0.1242   | 0.9957 |
| 860.0218      | 2.0   | 282  | 433.5286        | 0.1626   | 0.9965 |
| 775.4277      | 3.0   | 423  | 409.0374        | 0.1827   | 0.9966 |
| 697.2465      | 4.0   | 564  | 396.5604        | 0.2025   | 0.9966 |
| 582.6023      | 5.0   | 705  | 388.3294        | 0.2065   | 0.9966 |
| 617.5087      | 6.0   | 846  | 382.2605        | 0.2213   | 0.9966 |
| 627.533       | 7.0   | 987  | 377.6726        | 0.2269   | 0.9967 |
| 595.4033      | 8.0   | 1128 | 374.3268        | 0.2327   | 0.9967 |
| 593.3854      | 9.0   | 1269 | 371.4181        | 0.2409   | 0.9967 |
| 537.9777      | 10.0  | 1410 | 369.5010        | 0.2421   | 0.9967 |
| 552.3083      | 11.0  | 1551 | 368.0743        | 0.2468   | 0.9967 |
| 570.5438      | 12.0  | 1692 | 366.8302        | 0.2498   | 0.9967 |
| 507.5343      | 13.0  | 1833 | 366.1787        | 0.2499   | 0.9967 |
| 515.5528      | 14.0  | 1974 | 365.5653        | 0.2525   | 0.9967 |
| 458.5096      | 15.0  | 2115 | 365.1838        | 0.2528   | 0.9967 |
| 515.6953      | 16.0  | 2256 | 364.9844        | 0.2535   | 0.9967 |
| 533.7929      | 17.0  | 2397 | 364.8577        | 0.2538   | 0.9967 |
| 520.3728      | 18.0  | 2538 | 364.8066        | 0.2537   | 0.9967 |
| 525.1097      | 19.0  | 2679 | 364.7850        | 0.2539   | 0.9967 |
| 482.0612      | 20.0  | 2820 | 364.7876        | 0.2539   | 0.9967 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0