File size: 4,307 Bytes
895a899
 
 
 
3a31d34
895a899
 
 
543e4a6
895a899
 
 
3a31d34
895a899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a31d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895a899
 
 
3a31d34
 
 
 
 
 
 
 
895a899
 
 
3a8bd1c
3a31d34
895a899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a31d34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: apache-2.0
tags:
- generated_from_trainer
- siglip
metrics:
- accuracy
- f1
base_model: google/siglip-base-patch16-512
model-index:
- name: siglip-tagger-test-2
  results: []
pipeline_tag: image-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# siglip-tagger-test-2

This model is a fine-tuned version of [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 364.7850
- Accuracy: 0.2539
- F1: 0.9967

## Model description

This model is an experimental model that predicts danbooru tags of images.

## Example

```py
from PIL import Image

import torch
from transformers import (
    AutoModelForImageClassification,
    AutoImageProcessor,
)
import numpy as np

MODEL_NAME = "p1atdev/siglip-tagger-test-2"

model = AutoModelForImageClassification.from_pretrained(
    MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True
)
model.eval()
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)

image = Image.open("sample.jpg") # load your image
inputs = processor(image, return_tensors="pt").to(model.device, model.dtype)

logits = model(**inputs).logits.detach().cpu().float()[0]
logits = np.clip(logits, 0.0, 1.0)

results = {
    model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0
}
results = sorted(results.items(), key=lambda x: x[1], reverse=True)

for tag, score in results:
    print(f"{tag}: {score*100:.2f}%")
# 1girl: 100.00%
# outdoors: 100.00%
# sky: 100.00%
# solo: 100.00%
# school uniform: 96.88%
# skirt: 92.97%
# day: 89.06%
# ...
```

## Intended uses & limitations

This model is for research use only and is not recommended for production.

Please use wd-v1-4-tagger series by SmilingWolf:

- [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
- [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2)

etc.

## Training and evaluation data

High quality 5000 images from danbooru. They were shuffled and split into train:eval at 4500:500.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1496.9876     | 1.0   | 141  | 691.3267        | 0.1242   | 0.9957 |
| 860.0218      | 2.0   | 282  | 433.5286        | 0.1626   | 0.9965 |
| 775.4277      | 3.0   | 423  | 409.0374        | 0.1827   | 0.9966 |
| 697.2465      | 4.0   | 564  | 396.5604        | 0.2025   | 0.9966 |
| 582.6023      | 5.0   | 705  | 388.3294        | 0.2065   | 0.9966 |
| 617.5087      | 6.0   | 846  | 382.2605        | 0.2213   | 0.9966 |
| 627.533       | 7.0   | 987  | 377.6726        | 0.2269   | 0.9967 |
| 595.4033      | 8.0   | 1128 | 374.3268        | 0.2327   | 0.9967 |
| 593.3854      | 9.0   | 1269 | 371.4181        | 0.2409   | 0.9967 |
| 537.9777      | 10.0  | 1410 | 369.5010        | 0.2421   | 0.9967 |
| 552.3083      | 11.0  | 1551 | 368.0743        | 0.2468   | 0.9967 |
| 570.5438      | 12.0  | 1692 | 366.8302        | 0.2498   | 0.9967 |
| 507.5343      | 13.0  | 1833 | 366.1787        | 0.2499   | 0.9967 |
| 515.5528      | 14.0  | 1974 | 365.5653        | 0.2525   | 0.9967 |
| 458.5096      | 15.0  | 2115 | 365.1838        | 0.2528   | 0.9967 |
| 515.6953      | 16.0  | 2256 | 364.9844        | 0.2535   | 0.9967 |
| 533.7929      | 17.0  | 2397 | 364.8577        | 0.2538   | 0.9967 |
| 520.3728      | 18.0  | 2538 | 364.8066        | 0.2537   | 0.9967 |
| 525.1097      | 19.0  | 2679 | 364.7850        | 0.2539   | 0.9967 |
| 482.0612      | 20.0  | 2820 | 364.7876        | 0.2539   | 0.9967 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0