p1atdev commited on
Commit
03dbc2c
1 Parent(s): ad7ffbb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -7
README.md CHANGED
@@ -3,6 +3,7 @@ license: apache-2.0
3
  base_model: google/siglip-so400m-patch14-384
4
  tags:
5
  - generated_from_trainer
 
6
  metrics:
7
  - accuracy
8
  - f1
@@ -11,9 +12,6 @@ model-index:
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
  # siglip-tagger-test-3
18
 
19
  This model is a fine-tuned version of [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) on an unknown dataset.
@@ -24,15 +22,61 @@ It achieves the following results on the evaluation set:
24
 
25
  ## Model description
26
 
27
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Intended uses & limitations
30
 
31
- More information needed
 
 
 
 
 
 
 
 
32
 
33
  ## Training and evaluation data
34
 
35
- More information needed
 
36
 
37
  ## Training procedure
38
 
@@ -109,4 +153,4 @@ The following hyperparameters were used during training:
109
  - Transformers 4.37.2
110
  - Pytorch 2.1.2+cu118
111
  - Datasets 2.16.1
112
- - Tokenizers 0.15.0
 
3
  base_model: google/siglip-so400m-patch14-384
4
  tags:
5
  - generated_from_trainer
6
+ - siglip
7
  metrics:
8
  - accuracy
9
  - f1
 
12
  results: []
13
  ---
14
 
 
 
 
15
  # siglip-tagger-test-3
16
 
17
  This model is a fine-tuned version of [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) on an unknown dataset.
 
22
 
23
  ## Model description
24
 
25
+ This model is an experimental model that predicts danbooru tags of images.
26
+
27
+ ## Example
28
+
29
+ ```py
30
+ from PIL import Image
31
+ import torch
32
+
33
+ from transformers import (
34
+ AutoModelForImageClassification,
35
+ AutoImageProcessor,
36
+ )
37
+
38
+ import numpy as np
39
+
40
+ MODEL_NAME = "p1atdev/siglip-tagger-test-3"
41
+
42
+ model = AutoModelForImageClassification.from_pretrained(
43
+ MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True
44
+ )
45
+ model.eval()
46
+ processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
47
+
48
+ image = Image.open("sample.jpg") # load your image
49
+
50
+ inputs = processor(image, return_tensors="pt").to(model.device, model.dtype)
51
+
52
+ logits = model(**inputs).logits.detach().cpu().float()[0]
53
+ logits = np.clip(logits, 0.0, 1.0)
54
+
55
+ results = {
56
+ model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0
57
+ }
58
+ results = sorted(results.items(), key=lambda x: x[1], reverse=True)
59
+
60
+ for tag, score in results:
61
+ print(f"{tag}: {score*100:.2f}%")
62
+ ```
63
 
64
  ## Intended uses & limitations
65
 
66
+ This model is for research use only and is not recommended for production.
67
+
68
+ Please use wd-v1-4-tagger series by SmilingWolf:
69
+
70
+ - [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
71
+ - [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2)
72
+
73
+ etc.
74
+
75
 
76
  ## Training and evaluation data
77
 
78
+ High quality 5000 images from danbooru. They were shuffled and split into train:eval at 4500:500. (Same as p1atdev/siglip-tagger-test-2)
79
+
80
 
81
  ## Training procedure
82
 
 
153
  - Transformers 4.37.2
154
  - Pytorch 2.1.2+cu118
155
  - Datasets 2.16.1
156
+ - Tokenizers 0.15.0