Update README.md
Browse files
README.md
CHANGED
@@ -3,6 +3,7 @@ license: apache-2.0
|
|
3 |
base_model: google/siglip-so400m-patch14-384
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
- f1
|
@@ -11,9 +12,6 @@ model-index:
|
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
-
|
17 |
# siglip-tagger-test-3
|
18 |
|
19 |
This model is a fine-tuned version of [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) on an unknown dataset.
|
@@ -24,15 +22,61 @@ It achieves the following results on the evaluation set:
|
|
24 |
|
25 |
## Model description
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Intended uses & limitations
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
## Training and evaluation data
|
34 |
|
35 |
-
|
|
|
36 |
|
37 |
## Training procedure
|
38 |
|
@@ -109,4 +153,4 @@ The following hyperparameters were used during training:
|
|
109 |
- Transformers 4.37.2
|
110 |
- Pytorch 2.1.2+cu118
|
111 |
- Datasets 2.16.1
|
112 |
-
- Tokenizers 0.15.0
|
|
|
3 |
base_model: google/siglip-so400m-patch14-384
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
- siglip
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
- f1
|
|
|
12 |
results: []
|
13 |
---
|
14 |
|
|
|
|
|
|
|
15 |
# siglip-tagger-test-3
|
16 |
|
17 |
This model is a fine-tuned version of [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) on an unknown dataset.
|
|
|
22 |
|
23 |
## Model description
|
24 |
|
25 |
+
This model is an experimental model that predicts danbooru tags of images.
|
26 |
+
|
27 |
+
## Example
|
28 |
+
|
29 |
+
```py
|
30 |
+
from PIL import Image
|
31 |
+
import torch
|
32 |
+
|
33 |
+
from transformers import (
|
34 |
+
AutoModelForImageClassification,
|
35 |
+
AutoImageProcessor,
|
36 |
+
)
|
37 |
+
|
38 |
+
import numpy as np
|
39 |
+
|
40 |
+
MODEL_NAME = "p1atdev/siglip-tagger-test-3"
|
41 |
+
|
42 |
+
model = AutoModelForImageClassification.from_pretrained(
|
43 |
+
MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True
|
44 |
+
)
|
45 |
+
model.eval()
|
46 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
47 |
+
|
48 |
+
image = Image.open("sample.jpg") # load your image
|
49 |
+
|
50 |
+
inputs = processor(image, return_tensors="pt").to(model.device, model.dtype)
|
51 |
+
|
52 |
+
logits = model(**inputs).logits.detach().cpu().float()[0]
|
53 |
+
logits = np.clip(logits, 0.0, 1.0)
|
54 |
+
|
55 |
+
results = {
|
56 |
+
model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0
|
57 |
+
}
|
58 |
+
results = sorted(results.items(), key=lambda x: x[1], reverse=True)
|
59 |
+
|
60 |
+
for tag, score in results:
|
61 |
+
print(f"{tag}: {score*100:.2f}%")
|
62 |
+
```
|
63 |
|
64 |
## Intended uses & limitations
|
65 |
|
66 |
+
This model is for research use only and is not recommended for production.
|
67 |
+
|
68 |
+
Please use wd-v1-4-tagger series by SmilingWolf:
|
69 |
+
|
70 |
+
- [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
|
71 |
+
- [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2)
|
72 |
+
|
73 |
+
etc.
|
74 |
+
|
75 |
|
76 |
## Training and evaluation data
|
77 |
|
78 |
+
High quality 5000 images from danbooru. They were shuffled and split into train:eval at 4500:500. (Same as p1atdev/siglip-tagger-test-2)
|
79 |
+
|
80 |
|
81 |
## Training procedure
|
82 |
|
|
|
153 |
- Transformers 4.37.2
|
154 |
- Pytorch 2.1.2+cu118
|
155 |
- Datasets 2.16.1
|
156 |
+
- Tokenizers 0.15.0
|