Papers
arxiv:1805.12307

Attention-Based LSTM for Psychological Stress Detection from Spoken Language Using Distant Supervision

Published on May 31, 2018
Authors:
,

Abstract

We propose a Long Short-Term Memory (LSTM) with attention mechanism to classify psychological stress from self-conducted interview transcriptions. We apply distant supervision by automatically labeling tweets based on their hashtag content, which complements and expands the size of our corpus. This additional data is used to initialize the model parameters, and which it is fine-tuned using the interview data. This improves the model's robustness, especially by expanding the vocabulary size. The bidirectional LSTM model with attention is found to be the best model in terms of accuracy (74.1%) and f-score (74.3%). Furthermore, we show that distant supervision fine-tuning enhances the model's performance by 1.6% accuracy and 2.1% f-score. The attention mechanism helps the model to select informative words.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1805.12307 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1805.12307 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1805.12307 in a Space README.md to link it from this page.

Collections including this paper 1