Online Learning for Recommendations at Grubhub
Abstract
We propose a method to easily modify existing offline Recommender Systems to run online using Transfer Learning. Online Learning for Recommender Systems has two main advantages: quality and scale. Like many Machine Learning algorithms in production if not regularly retrained will suffer from Concept Drift. A policy that is updated frequently online can adapt to drift faster than a batch system. This is especially true for user-interaction systems like recommenders where the underlying distribution can shift drastically to follow user behaviour. As a platform grows rapidly like Grubhub, the cost of running batch training jobs becomes material. A shift from stateless batch learning offline to stateful incremental learning online can recover, for example, at Grubhub, up to a 45x cost savings and a +20% metrics increase. There are a few challenges to overcome with the transition to online stateful learning, namely convergence, non-stationary embeddings and off-policy evaluation, which we explore from our experiences running this system in production.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper