Papers
arxiv:2306.11167

Large Language Models are Fixated by Red Herrings: Exploring Creative Problem Solving and Einstellung Effect using the Only Connect Wall Dataset

Published on Jun 19, 2023
Authors:
,

Abstract

The quest for human imitative AI has been an enduring topic in AI research since its inception. The technical evolution and emerging capabilities of the latest cohort of large language models (LLMs) have reinvigorated the subject beyond academia to the cultural zeitgeist. While recent NLP evaluation benchmark tasks test some aspects of human-imitative behaviour (e.g., BIG-bench's 'human-like behavior' tasks), few, if not none, examine creative problem solving abilities. Creative problem solving in humans is a well-studied topic in cognitive neuroscience with standardized tests that predominantly use the ability to associate (heterogeneous) connections among clue words as a metric for creativity. Exposure to misleading stimuli - distractors dubbed red herrings - impede human performance in such tasks via the fixation effect and Einstellung paradigm. In cognitive neuroscience studies, such fixations are experimentally induced by pre-exposing participants to orthographically similar incorrect words to subsequent word-fragments or clues. The popular British quiz show Only Connect's Connecting Wall segment essentially mimics Mednick's Remote Associates Test (RAT) formulation with built-in, deliberate red herrings, which makes it an ideal proxy dataset to explore and study fixation effect and Einstellung paradigm from cognitive neuroscience in LLMs. In addition to presenting the novel Only Connect Wall (OCW) dataset, we also report results from our evaluation of selected pre-trained language models and LLMs (including OpenAI's GPT series) on creative problem solving tasks like grouping clue words by heterogeneous connections, and identifying correct open knowledge domain connections in respective groups. The code and link to the dataset are available at https://github.com/TaatiTeam/OCW.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2306.11167 in a model README.md to link it from this page.

Datasets citing this paper 4

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2306.11167 in a Space README.md to link it from this page.

Collections including this paper 1