Papers
arxiv:2310.18780

Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions

Published on Oct 28, 2023
Authors:
,
,
,
,
,
,
,
,
,
,
,

Abstract

Recent advances in attention-free sequence models rely on convolutions as alternatives to the attention operator at the core of Transformers. In particular, long convolution sequence models have achieved state-of-the-art performance in many domains, but incur a significant cost during auto-regressive inference workloads -- naively requiring a full pass (or caching of activations) over the input sequence for each generated token -- similarly to attention-based models. In this paper, we seek to enable mathcal O(1) compute and memory cost per token in any pre-trained long convolution architecture to reduce memory footprint and increase throughput during generation. Concretely, our methods consist in extracting low-dimensional linear state-space models from each convolution layer, building upon rational interpolation and model-order reduction techniques. We further introduce architectural improvements to convolution-based layers such as Hyena: by weight-tying the filters across channels into heads, we achieve higher pre-training quality and reduce the number of filters to be distilled. The resulting model achieves 10x higher throughput than Transformers and 1.5x higher than Hyena at 1.3B parameters, without any loss in quality after distillation.

Community

Sign up or log in to comment

Models citing this paper 8

Browse 8 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2310.18780 in a dataset README.md to link it from this page.

Spaces citing this paper 13

Collections including this paper 4