patrickvonplaten
commited on
Commit
•
9097b44
1
Parent(s):
ce69a58
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- automatic-speech-recognition
|
4 |
+
- timit_asr
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- timit_asr
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-random
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-random
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [patrickvonplaten/wav2vec2-base-random](https://huggingface.co/patrickvonplaten/wav2vec2-base-random) on the TIMIT_ASR - NA dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.1593
|
21 |
+
- Wer: 0.8364
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 1000
|
47 |
+
- num_epochs: 20.0
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 2.9043 | 0.69 | 100 | 2.9683 | 1.0 |
|
55 |
+
| 2.8537 | 1.38 | 200 | 2.9281 | 0.9997 |
|
56 |
+
| 2.7803 | 2.07 | 300 | 2.7330 | 0.9999 |
|
57 |
+
| 2.6806 | 2.76 | 400 | 2.5792 | 1.0 |
|
58 |
+
| 2.4136 | 3.45 | 500 | 2.4327 | 0.9948 |
|
59 |
+
| 2.1682 | 4.14 | 600 | 2.3508 | 0.9877 |
|
60 |
+
| 2.2577 | 4.83 | 700 | 2.2176 | 0.9773 |
|
61 |
+
| 2.355 | 5.52 | 800 | 2.1753 | 0.9542 |
|
62 |
+
| 1.8588 | 6.21 | 900 | 2.0650 | 0.8851 |
|
63 |
+
| 1.6831 | 6.9 | 1000 | 2.0109 | 0.8618 |
|
64 |
+
| 1.888 | 7.59 | 1100 | 1.9660 | 0.8418 |
|
65 |
+
| 2.0066 | 8.28 | 1200 | 1.9847 | 0.8531 |
|
66 |
+
| 1.7044 | 8.97 | 1300 | 1.9760 | 0.8527 |
|
67 |
+
| 1.3168 | 9.66 | 1400 | 2.0708 | 0.8327 |
|
68 |
+
| 1.2143 | 10.34 | 1500 | 2.0601 | 0.8419 |
|
69 |
+
| 1.6189 | 11.03 | 1600 | 2.0960 | 0.8299 |
|
70 |
+
| 1.13 | 11.72 | 1700 | 2.2540 | 0.8408 |
|
71 |
+
| 0.8001 | 12.41 | 1800 | 2.4260 | 0.8306 |
|
72 |
+
| 0.7769 | 13.1 | 1900 | 2.4182 | 0.8445 |
|
73 |
+
| 1.2165 | 13.79 | 2000 | 2.3666 | 0.8284 |
|
74 |
+
| 0.8026 | 14.48 | 2100 | 2.7118 | 0.8662 |
|
75 |
+
| 0.5148 | 15.17 | 2200 | 2.7957 | 0.8526 |
|
76 |
+
| 0.4921 | 15.86 | 2300 | 2.8244 | 0.8346 |
|
77 |
+
| 0.7629 | 16.55 | 2400 | 2.8944 | 0.8370 |
|
78 |
+
| 0.5762 | 17.24 | 2500 | 3.0335 | 0.8367 |
|
79 |
+
| 0.4076 | 17.93 | 2600 | 3.0776 | 0.8358 |
|
80 |
+
| 0.3395 | 18.62 | 2700 | 3.1572 | 0.8261 |
|
81 |
+
| 0.4862 | 19.31 | 2800 | 3.1319 | 0.8414 |
|
82 |
+
| 0.5061 | 20.0 | 2900 | 3.1593 | 0.8364 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.12.0.dev0
|
88 |
+
- Pytorch 1.8.1
|
89 |
+
- Datasets 1.14.1.dev0
|
90 |
+
- Tokenizers 0.10.3
|