Commit
•
3b6df47
1
Parent(s):
069d990
added custom handler
Browse files- create_handler.ipynb +223 -0
- handler.py +64 -0
- invoice_example.png +0 -0
create_handler.ipynb
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## 1. Setup & Installation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"!apt install -y tesseract-ocr\n",
|
17 |
+
"pip install pytesseract"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {},
|
23 |
+
"source": [
|
24 |
+
"## 2. Create Custom Handler for Inference Endpoints\n"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 20,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"name": "stdout",
|
34 |
+
"output_type": "stream",
|
35 |
+
"text": [
|
36 |
+
"Overwriting handler.py\n"
|
37 |
+
]
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"%%writefile handler.py\n",
|
42 |
+
"from typing import Dict, List, Any\n",
|
43 |
+
"from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor\n",
|
44 |
+
"import torch\n",
|
45 |
+
"from subprocess import run\n",
|
46 |
+
"\n",
|
47 |
+
"# install tesseract-ocr and pytesseract\n",
|
48 |
+
"run(\"apt install -y tesseract-ocr\", shell=True, check=True)\n",
|
49 |
+
"run(\"pip install pytesseract\", shell=True, check=True)\n",
|
50 |
+
"\n",
|
51 |
+
"# helper function to unnormalize bboxes for drawing onto the image\n",
|
52 |
+
"def unnormalize_box(bbox, width, height):\n",
|
53 |
+
" return [\n",
|
54 |
+
" width * (bbox[0] / 1000),\n",
|
55 |
+
" height * (bbox[1] / 1000),\n",
|
56 |
+
" width * (bbox[2] / 1000),\n",
|
57 |
+
" height * (bbox[3] / 1000),\n",
|
58 |
+
" ]\n",
|
59 |
+
"\n",
|
60 |
+
"\n",
|
61 |
+
"# set device\n",
|
62 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
63 |
+
"\n",
|
64 |
+
"\n",
|
65 |
+
"class EndpointHandler:\n",
|
66 |
+
" def __init__(self, path=\"\"):\n",
|
67 |
+
" # load model and processor from path\n",
|
68 |
+
" self.model = LayoutLMForTokenClassification.from_pretrained(\"philschmid/layoutlm-funsd\").to(device)\n",
|
69 |
+
" self.processor = LayoutLMv2Processor.from_pretrained(\"philschmid/layoutlm-funsd\")\n",
|
70 |
+
"\n",
|
71 |
+
" def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:\n",
|
72 |
+
" \"\"\"\n",
|
73 |
+
" Args:\n",
|
74 |
+
" data (:obj:):\n",
|
75 |
+
" includes the deserialized image file as PIL.Image\n",
|
76 |
+
" \"\"\"\n",
|
77 |
+
" # process input\n",
|
78 |
+
" image = data.pop(\"inputs\", data)\n",
|
79 |
+
"\n",
|
80 |
+
" # process image\n",
|
81 |
+
" encoding = self.processor(image, return_tensors=\"pt\")\n",
|
82 |
+
"\n",
|
83 |
+
" # run prediction\n",
|
84 |
+
" with torch.inference_mode():\n",
|
85 |
+
" outputs = self.model(\n",
|
86 |
+
" input_ids=encoding.input_ids.to(device),\n",
|
87 |
+
" bbox=encoding.bbox.to(device),\n",
|
88 |
+
" attention_mask=encoding.attention_mask.to(device),\n",
|
89 |
+
" token_type_ids=encoding.token_type_ids.to(device),\n",
|
90 |
+
" )\n",
|
91 |
+
" predictions = outputs.logits.softmax(-1)\n",
|
92 |
+
"\n",
|
93 |
+
" # post process output\n",
|
94 |
+
" result = []\n",
|
95 |
+
" for item, inp_ids, bbox in zip(\n",
|
96 |
+
" predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu()\n",
|
97 |
+
" ):\n",
|
98 |
+
" label = self.model.config.id2label[int(item.argmax().cpu())]\n",
|
99 |
+
" if label == \"O\":\n",
|
100 |
+
" continue\n",
|
101 |
+
" score = item.max().item()\n",
|
102 |
+
" text = self.processor.tokenizer.decode(inp_ids)\n",
|
103 |
+
" bbox = unnormalize_box(bbox.tolist(), image.width, image.height)\n",
|
104 |
+
" result.append({\"label\": label, \"score\": score, \"text\": text, \"bbox\": bbox})\n",
|
105 |
+
" return {\"predictions\": result}\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "markdown",
|
110 |
+
"metadata": {},
|
111 |
+
"source": [
|
112 |
+
"test custom pipeline"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 2,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"from handler import EndpointHandler\n",
|
122 |
+
"\n",
|
123 |
+
"my_handler = EndpointHandler(\".\")"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 13,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"name": "stdout",
|
133 |
+
"output_type": "stream",
|
134 |
+
"text": [
|
135 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
136 |
+
"To disable this warning, you can either:\n",
|
137 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
138 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
139 |
+
]
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"import base64\n",
|
144 |
+
"from PIL import Image\n",
|
145 |
+
"from io import BytesIO\n",
|
146 |
+
"import json\n",
|
147 |
+
"\n",
|
148 |
+
"# read image from disk\n",
|
149 |
+
"image = Image.open(\"invoice_example.png\")\n",
|
150 |
+
"request = {\"inputs\":image }\n",
|
151 |
+
"\n",
|
152 |
+
"# test the handler\n",
|
153 |
+
"pred = my_handler(request)"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": 16,
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"from PIL import Image, ImageDraw, ImageFont\n",
|
163 |
+
"\n",
|
164 |
+
"\n",
|
165 |
+
"def draw_result(image,result):\n",
|
166 |
+
" label2color = {\n",
|
167 |
+
" \"B-HEADER\": \"blue\",\n",
|
168 |
+
" \"B-QUESTION\": \"red\",\n",
|
169 |
+
" \"B-ANSWER\": \"green\",\n",
|
170 |
+
" \"I-HEADER\": \"blue\",\n",
|
171 |
+
" \"I-QUESTION\": \"red\",\n",
|
172 |
+
" \"I-ANSWER\": \"green\",\n",
|
173 |
+
" }\n",
|
174 |
+
"\n",
|
175 |
+
"\n",
|
176 |
+
" # draw predictions over the image\n",
|
177 |
+
" draw = ImageDraw.Draw(image)\n",
|
178 |
+
" font = ImageFont.load_default()\n",
|
179 |
+
" for res in result:\n",
|
180 |
+
" draw.rectangle(res[\"bbox\"], outline=\"black\")\n",
|
181 |
+
" draw.rectangle(res[\"bbox\"], outline=label2color[res[\"label\"]])\n",
|
182 |
+
" draw.text((res[\"bbox\"][0] + 10, res[\"bbox\"][1] - 10), text=res[\"label\"], fill=label2color[res[\"label\"]], font=font)\n",
|
183 |
+
" return image\n",
|
184 |
+
"\n",
|
185 |
+
"draw_result(image,pred[\"predictions\"])"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": null,
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": []
|
194 |
+
}
|
195 |
+
],
|
196 |
+
"metadata": {
|
197 |
+
"kernelspec": {
|
198 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
199 |
+
"language": "python",
|
200 |
+
"name": "python3"
|
201 |
+
},
|
202 |
+
"language_info": {
|
203 |
+
"codemirror_mode": {
|
204 |
+
"name": "ipython",
|
205 |
+
"version": 3
|
206 |
+
},
|
207 |
+
"file_extension": ".py",
|
208 |
+
"mimetype": "text/x-python",
|
209 |
+
"name": "python",
|
210 |
+
"nbconvert_exporter": "python",
|
211 |
+
"pygments_lexer": "ipython3",
|
212 |
+
"version": "3.9.13"
|
213 |
+
},
|
214 |
+
"orig_nbformat": 4,
|
215 |
+
"vscode": {
|
216 |
+
"interpreter": {
|
217 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
218 |
+
}
|
219 |
+
}
|
220 |
+
},
|
221 |
+
"nbformat": 4,
|
222 |
+
"nbformat_minor": 2
|
223 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor
|
3 |
+
import torch
|
4 |
+
from subprocess import run
|
5 |
+
|
6 |
+
# install tesseract-ocr and pytesseract
|
7 |
+
run("apt install -y tesseract-ocr", shell=True, check=True)
|
8 |
+
run("pip install pytesseract", shell=True, check=True)
|
9 |
+
|
10 |
+
# helper function to unnormalize bboxes for drawing onto the image
|
11 |
+
def unnormalize_box(bbox, width, height):
|
12 |
+
return [
|
13 |
+
width * (bbox[0] / 1000),
|
14 |
+
height * (bbox[1] / 1000),
|
15 |
+
width * (bbox[2] / 1000),
|
16 |
+
height * (bbox[3] / 1000),
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
# set device
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
|
24 |
+
class EndpointHandler:
|
25 |
+
def __init__(self, path=""):
|
26 |
+
# load model and processor from path
|
27 |
+
self.model = LayoutLMForTokenClassification.from_pretrained("philschmid/layoutlm-funsd").to(device)
|
28 |
+
self.processor = LayoutLMv2Processor.from_pretrained("philschmid/layoutlm-funsd")
|
29 |
+
|
30 |
+
def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
data (:obj:):
|
34 |
+
includes the deserialized image file as PIL.Image
|
35 |
+
"""
|
36 |
+
# process input
|
37 |
+
image = data.pop("inputs", data)
|
38 |
+
|
39 |
+
# process image
|
40 |
+
encoding = self.processor(image, return_tensors="pt")
|
41 |
+
|
42 |
+
# run prediction
|
43 |
+
with torch.inference_mode():
|
44 |
+
outputs = self.model(
|
45 |
+
input_ids=encoding.input_ids.to(device),
|
46 |
+
bbox=encoding.bbox.to(device),
|
47 |
+
attention_mask=encoding.attention_mask.to(device),
|
48 |
+
token_type_ids=encoding.token_type_ids.to(device),
|
49 |
+
)
|
50 |
+
predictions = outputs.logits.softmax(-1)
|
51 |
+
|
52 |
+
# post process output
|
53 |
+
result = []
|
54 |
+
for item, inp_ids, bbox in zip(
|
55 |
+
predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu()
|
56 |
+
):
|
57 |
+
label = self.model.config.id2label[int(item.argmax().cpu())]
|
58 |
+
if label == "O":
|
59 |
+
continue
|
60 |
+
score = item.max().item()
|
61 |
+
text = self.processor.tokenizer.decode(inp_ids)
|
62 |
+
bbox = unnormalize_box(bbox.tolist(), image.width, image.height)
|
63 |
+
result.append({"label": label, "score": score, "text": text, "bbox": bbox})
|
64 |
+
return {"predictions": result}
|
invoice_example.png
ADDED