Commit
•
a854397
1
Parent(s):
1aa9cb5
add custom handler
Browse files- README.md +219 -0
- config.json +28 -0
- handler.py +26 -0
- merges.txt +0 -0
- model.onnx +3 -0
- model_optimized.onnx +3 -0
- model_optimized_quantized.onnx +3 -0
- optimize_model.ipynb +438 -0
- ort_config.json +29 -0
- requirements.txt +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +67 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- sentence-embeddings
|
5 |
+
- endpoints-template
|
6 |
+
- optimum
|
7 |
+
library_name: generic
|
8 |
+
---
|
9 |
+
|
10 |
+
# Optimized and Quantized [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) with a custom pipeline.py
|
11 |
+
|
12 |
+
|
13 |
+
This repository implements a `custom` task for `sentence-embeddings` for 🤗 Inference Endpoints for accelerated inference using [🤗 Optiumum](https://huggingface.co/docs/optimum/index). The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/all-MiniLM-L6-v2-optimum-embeddings/blob/main/pipeline.py).
|
14 |
+
|
15 |
+
Below is also describe how we converted & optimized the model, based on the [Accelerate Sentence Transformers with Hugging Face Optimum](https://www.philschmid.de/optimize-sentence-transformers) blog post. You can also check out the [notebook](https://huggingface.co/philschmid/all-MiniLM-L6-v2-optimum-embeddings/blob/main/convert.ipynb).
|
16 |
+
|
17 |
+
To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_
|
18 |
+
|
19 |
+
### expected Request payload
|
20 |
+
|
21 |
+
```json
|
22 |
+
{
|
23 |
+
"inputs": "The sky is a blue today and not gray",
|
24 |
+
}
|
25 |
+
```
|
26 |
+
|
27 |
+
below is an example on how to run a request using Python and `requests`.
|
28 |
+
|
29 |
+
## Run Request
|
30 |
+
|
31 |
+
```python
|
32 |
+
import json
|
33 |
+
from typing import List
|
34 |
+
import requests as r
|
35 |
+
import base64
|
36 |
+
|
37 |
+
ENDPOINT_URL = ""
|
38 |
+
HF_TOKEN = ""
|
39 |
+
|
40 |
+
|
41 |
+
def predict(document_string:str=None):
|
42 |
+
|
43 |
+
payload = {"inputs": document_string}
|
44 |
+
response = r.post(
|
45 |
+
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
|
46 |
+
)
|
47 |
+
return response.json()
|
48 |
+
|
49 |
+
|
50 |
+
prediction = predict(
|
51 |
+
path_to_image="The sky is a blue today and not gray"
|
52 |
+
)
|
53 |
+
```
|
54 |
+
|
55 |
+
expected output
|
56 |
+
|
57 |
+
```python
|
58 |
+
{'embeddings': [[-0.021580450236797333,
|
59 |
+
0.021715054288506508,
|
60 |
+
0.00979710929095745,
|
61 |
+
-0.0005379787762649357,
|
62 |
+
0.04682469740509987,
|
63 |
+
-0.013600599952042103,
|
64 |
+
...
|
65 |
+
}
|
66 |
+
```
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
## How to create your own optimized and quantized model
|
71 |
+
|
72 |
+
Steps:
|
73 |
+
[1. Convert model to ONNX](#1-convert-model-to-onnx)
|
74 |
+
[2. Optimize & quantize model with Optimum](#2-optimize--quantize-model-with-optimum)
|
75 |
+
[3. Create Custom Handler for Inference Endpoints](#3-create-custom-handler-for-inference-endpoints)
|
76 |
+
|
77 |
+
Helpful links:
|
78 |
+
* [Accelerate Sentence Transformers with Hugging Face Optimum](https://www.philschmid.de/optimize-sentence-transformers)
|
79 |
+
* [Create Custom Handler Endpoints](https://link-to-docs)
|
80 |
+
|
81 |
+
## Setup & Installation
|
82 |
+
|
83 |
+
```python
|
84 |
+
%%writefile requirements.txt
|
85 |
+
optimum[onnxruntime]==1.3.0
|
86 |
+
mkl-include
|
87 |
+
mkl
|
88 |
+
```
|
89 |
+
|
90 |
+
install requirements
|
91 |
+
|
92 |
+
```python
|
93 |
+
!pip install -r requirements.txt
|
94 |
+
```
|
95 |
+
|
96 |
+
## 1. Convert model to ONNX
|
97 |
+
|
98 |
+
|
99 |
+
```python
|
100 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
101 |
+
from transformers import AutoTokenizer
|
102 |
+
from pathlib import Path
|
103 |
+
|
104 |
+
|
105 |
+
model_id="sentence-transformers/all-MiniLM-L6-v2"
|
106 |
+
onnx_path = Path(".")
|
107 |
+
|
108 |
+
# load vanilla transformers and convert to onnx
|
109 |
+
model = ORTModelForFeatureExtraction.from_pretrained(model_id, from_transformers=True)
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
111 |
+
|
112 |
+
# save onnx checkpoint and tokenizer
|
113 |
+
model.save_pretrained(onnx_path)
|
114 |
+
tokenizer.save_pretrained(onnx_path)
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
## 2. Optimize & quantize model with Optimum
|
119 |
+
|
120 |
+
|
121 |
+
```python
|
122 |
+
from optimum.onnxruntime import ORTOptimizer, ORTQuantizer
|
123 |
+
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
|
124 |
+
|
125 |
+
# create ORTOptimizer and define optimization configuration
|
126 |
+
optimizer = ORTOptimizer.from_pretrained(model_id, feature=model.pipeline_task)
|
127 |
+
optimization_config = OptimizationConfig(optimization_level=99) # enable all optimizations
|
128 |
+
|
129 |
+
# apply the optimization configuration to the model
|
130 |
+
optimizer.export(
|
131 |
+
onnx_model_path=onnx_path / "model.onnx",
|
132 |
+
onnx_optimized_model_output_path=onnx_path / "model-optimized.onnx",
|
133 |
+
optimization_config=optimization_config,
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
# create ORTQuantizer and define quantization configuration
|
138 |
+
dynamic_quantizer = ORTQuantizer.from_pretrained(model_id, feature=model.pipeline_task)
|
139 |
+
dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
|
140 |
+
|
141 |
+
# apply the quantization configuration to the model
|
142 |
+
model_quantized_path = dynamic_quantizer.export(
|
143 |
+
onnx_model_path=onnx_path / "model-optimized.onnx",
|
144 |
+
onnx_quantized_model_output_path=onnx_path / "model-quantized.onnx",
|
145 |
+
quantization_config=dqconfig,
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
```
|
150 |
+
|
151 |
+
## 3. Create Custom Handler for Inference Endpoints
|
152 |
+
|
153 |
+
|
154 |
+
```python
|
155 |
+
%%writefile pipeline.py
|
156 |
+
from typing import Dict, List, Any
|
157 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
158 |
+
from transformers import AutoTokenizer
|
159 |
+
import torch.nn.functional as F
|
160 |
+
import torch
|
161 |
+
|
162 |
+
# copied from the model card
|
163 |
+
def mean_pooling(model_output, attention_mask):
|
164 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
165 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
166 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
167 |
+
|
168 |
+
|
169 |
+
class PreTrainedPipeline():
|
170 |
+
def __init__(self, path=""):
|
171 |
+
# load the optimized model
|
172 |
+
self.model = ORTModelForFeatureExtraction.from_pretrained(path, file_name="model-quantized.onnx")
|
173 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
174 |
+
|
175 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
176 |
+
"""
|
177 |
+
Args:
|
178 |
+
data (:obj:):
|
179 |
+
includes the input data and the parameters for the inference.
|
180 |
+
Return:
|
181 |
+
A :obj:`list`:. The list contains the embeddings of the inference inputs
|
182 |
+
"""
|
183 |
+
inputs = data.get("inputs", data)
|
184 |
+
|
185 |
+
# tokenize the input
|
186 |
+
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
|
187 |
+
# run the model
|
188 |
+
outputs = self.model(**encoded_inputs)
|
189 |
+
# Perform pooling
|
190 |
+
sentence_embeddings = mean_pooling(outputs, encoded_inputs['attention_mask'])
|
191 |
+
# Normalize embeddings
|
192 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
193 |
+
# postprocess the prediction
|
194 |
+
return {"embeddings": sentence_embeddings.tolist()}
|
195 |
+
```
|
196 |
+
|
197 |
+
test custom pipeline
|
198 |
+
|
199 |
+
|
200 |
+
```python
|
201 |
+
from pipeline import PreTrainedPipeline
|
202 |
+
|
203 |
+
# init handler
|
204 |
+
my_handler = PreTrainedPipeline(path=".")
|
205 |
+
|
206 |
+
# prepare sample payload
|
207 |
+
request = {"inputs": "I am quite excited how this will turn out"}
|
208 |
+
|
209 |
+
# test the handler
|
210 |
+
%timeit my_handler(request)
|
211 |
+
|
212 |
+
```
|
213 |
+
|
214 |
+
results
|
215 |
+
|
216 |
+
```
|
217 |
+
1.55 ms ± 2.04 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
|
218 |
+
```
|
219 |
+
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "deepset/roberta-base-squad2",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForQuestionAnswering"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"language": "english",
|
17 |
+
"layer_norm_eps": 1e-05,
|
18 |
+
"max_position_embeddings": 514,
|
19 |
+
"name": "Roberta",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"transformers_version": "4.21.3",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": false,
|
27 |
+
"vocab_size": 50265
|
28 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from optimum.onnxruntime import ORTModelForQuestionAnswering
|
3 |
+
from transformers import AutoTokenizer, pipeline
|
4 |
+
|
5 |
+
|
6 |
+
class EndpointHandler():
|
7 |
+
def __init__(self, path=""):
|
8 |
+
# load the optimized model
|
9 |
+
self.model = ORTModelForQuestionAnswering.from_pretrained(path, file_name="model_optimized_quantized.onnx")
|
10 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
11 |
+
# create pipeline
|
12 |
+
self.pipeline = pipeline("question-answering", model=self.model, tokenizer=self.tokenizer)
|
13 |
+
|
14 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
data (:obj:):
|
18 |
+
includes the input data and the parameters for the inference.
|
19 |
+
Return:
|
20 |
+
A :obj:`list`:. The list contains the answer and scores of the inference inputs
|
21 |
+
"""
|
22 |
+
inputs = data.get("inputs", data)
|
23 |
+
# run the model
|
24 |
+
prediction = self.pipeline(**inputs)
|
25 |
+
# return prediction
|
26 |
+
return prediction
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:570afefbc8642150310e46c10a252dd091c8f44449e8a3a65a425f77991dc2ab
|
3 |
+
size 496337664
|
model_optimized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11c0577c4bb3afdb2a88e21807d5722511b6aa678d6d8275a7ba73c5cd8f88b1
|
3 |
+
size 496254364
|
model_optimized_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a27adda924cc0cd34fde41f606da51673ebefb7132a5518e41f1196ebc362f1
|
3 |
+
size 305175132
|
optimize_model.ipynb
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Convert & Optimize model with Optimum \n",
|
8 |
+
"\n",
|
9 |
+
"\n",
|
10 |
+
"Steps:\n",
|
11 |
+
"1. Convert model to ONNX\n",
|
12 |
+
"2. Optimize & quantize model with Optimum\n",
|
13 |
+
"3. Create Custom Handler for Inference Endpoints\n",
|
14 |
+
"4. Test Custom Handler Locally\n",
|
15 |
+
"5. Push to repository and create Inference Endpoint\n",
|
16 |
+
"\n",
|
17 |
+
"Helpful links:\n",
|
18 |
+
"* [Accelerate Transformers with Hugging Face Optimum](https://huggingface.co/blog/optimum-inference)\n",
|
19 |
+
"* [Optimizing Transformers for GPUs with Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum-gpu)\n",
|
20 |
+
"* [Optimum Documentation](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort)\n",
|
21 |
+
"* [Create Custom Handler Endpoints](https://link-to-docs)"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "markdown",
|
26 |
+
"metadata": {},
|
27 |
+
"source": [
|
28 |
+
"## Setup & Installation"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 1,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stdout",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"Writing requirements.txt\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"%%writefile requirements.txt\n",
|
46 |
+
"optimum[onnxruntime]==1.4.0\n",
|
47 |
+
"mkl-include\n",
|
48 |
+
"mkl"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": null,
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [],
|
56 |
+
"source": [
|
57 |
+
"!pip install -r requirements.txt"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "markdown",
|
62 |
+
"metadata": {},
|
63 |
+
"source": [
|
64 |
+
"## 0. Base line Performance\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"from transformers import pipeline\n",
|
74 |
+
"\n",
|
75 |
+
"qa = pipeline(\"question-answering\",model=\"deepset/roberta-base-squad2\")"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "markdown",
|
80 |
+
"metadata": {},
|
81 |
+
"source": [
|
82 |
+
"Okay, let's test the performance (latency) with sequence length of 128."
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 8,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"context=\"Hello, my name is Philipp and I live in Nuremberg, Germany. Currently I am working as a Technical Lead at Hugging Face to democratize artificial intelligence through open source and open science. In the past I designed and implemented cloud-native machine learning architectures for fin-tech and insurance companies. I found my passion for cloud concepts and machine learning 5 years ago. Since then I never stopped learning. Currently, I am focusing myself in the area NLP and how to leverage models like BERT, Roberta, T5, ViT, and GPT2 to generate business value.\" \n",
|
92 |
+
"question=\"As what is Philipp working?\" \n",
|
93 |
+
"\n",
|
94 |
+
"payload = {\"inputs\": {\"question\": question, \"context\": context}}"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 9,
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [
|
102 |
+
{
|
103 |
+
"name": "stdout",
|
104 |
+
"output_type": "stream",
|
105 |
+
"text": [
|
106 |
+
"Vanilla model Average latency (ms) - 64.15 +\\- 2.44\n"
|
107 |
+
]
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"from time import perf_counter\n",
|
112 |
+
"import numpy as np \n",
|
113 |
+
"\n",
|
114 |
+
"def measure_latency(pipe,payload):\n",
|
115 |
+
" latencies = []\n",
|
116 |
+
" # warm up\n",
|
117 |
+
" for _ in range(10):\n",
|
118 |
+
" _ = pipe(question=payload[\"inputs\"][\"question\"], context=payload[\"inputs\"][\"context\"])\n",
|
119 |
+
" # Timed run\n",
|
120 |
+
" for _ in range(50):\n",
|
121 |
+
" start_time = perf_counter()\n",
|
122 |
+
" _ = pipe(question=payload[\"inputs\"][\"question\"], context=payload[\"inputs\"][\"context\"])\n",
|
123 |
+
" latency = perf_counter() - start_time\n",
|
124 |
+
" latencies.append(latency)\n",
|
125 |
+
" # Compute run statistics\n",
|
126 |
+
" time_avg_ms = 1000 * np.mean(latencies)\n",
|
127 |
+
" time_std_ms = 1000 * np.std(latencies)\n",
|
128 |
+
" return f\"Average latency (ms) - {time_avg_ms:.2f} +\\- {time_std_ms:.2f}\"\n",
|
129 |
+
"\n",
|
130 |
+
"print(f\"Vanilla model {measure_latency(qa,payload)}\")"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "markdown",
|
135 |
+
"metadata": {},
|
136 |
+
"source": [
|
137 |
+
"## 1. Convert model to ONNX"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": 10,
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [
|
145 |
+
{
|
146 |
+
"data": {
|
147 |
+
"application/vnd.jupyter.widget-view+json": {
|
148 |
+
"model_id": "df00c03d67b546bf8a3d1a327b9380f5",
|
149 |
+
"version_major": 2,
|
150 |
+
"version_minor": 0
|
151 |
+
},
|
152 |
+
"text/plain": [
|
153 |
+
"Downloading: 0%| | 0.00/571 [00:00<?, ?B/s]"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"metadata": {},
|
157 |
+
"output_type": "display_data"
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"text/plain": [
|
162 |
+
"('./tokenizer_config.json',\n",
|
163 |
+
" './special_tokens_map.json',\n",
|
164 |
+
" './vocab.json',\n",
|
165 |
+
" './merges.txt',\n",
|
166 |
+
" './added_tokens.json',\n",
|
167 |
+
" './tokenizer.json')"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"execution_count": 10,
|
171 |
+
"metadata": {},
|
172 |
+
"output_type": "execute_result"
|
173 |
+
}
|
174 |
+
],
|
175 |
+
"source": [
|
176 |
+
"from optimum.onnxruntime import ORTModelForQuestionAnswering\n",
|
177 |
+
"from transformers import AutoTokenizer\n",
|
178 |
+
"from pathlib import Path\n",
|
179 |
+
"\n",
|
180 |
+
"\n",
|
181 |
+
"model_id=\"deepset/roberta-base-squad2\"\n",
|
182 |
+
"onnx_path = Path(\".\")\n",
|
183 |
+
"\n",
|
184 |
+
"# load vanilla transformers and convert to onnx\n",
|
185 |
+
"model = ORTModelForQuestionAnswering.from_pretrained(model_id, from_transformers=True)\n",
|
186 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
187 |
+
"\n",
|
188 |
+
"# save onnx checkpoint and tokenizer\n",
|
189 |
+
"model.save_pretrained(onnx_path)\n",
|
190 |
+
"tokenizer.save_pretrained(onnx_path)"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "markdown",
|
195 |
+
"metadata": {},
|
196 |
+
"source": [
|
197 |
+
"## 2. Optimize & quantize model with Optimum"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": 11,
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"name": "stderr",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"2022-09-12 18:47:03.240390005 [W:onnxruntime:, inference_session.cc:1488 Initialize] Serializing optimized model with Graph Optimization level greater than ORT_ENABLE_EXTENDED and the NchwcTransformer enabled. The generated model may contain hardware specific optimizations, and should only be used in the same environment the model was optimized in.\n"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"text/plain": [
|
215 |
+
"PosixPath('.')"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"execution_count": 11,
|
219 |
+
"metadata": {},
|
220 |
+
"output_type": "execute_result"
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"from optimum.onnxruntime import ORTOptimizer, ORTQuantizer\n",
|
225 |
+
"from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig\n",
|
226 |
+
"\n",
|
227 |
+
"# Create the optimizer\n",
|
228 |
+
"optimizer = ORTOptimizer.from_pretrained(model)\n",
|
229 |
+
"\n",
|
230 |
+
"# Define the optimization strategy by creating the appropriate configuration\n",
|
231 |
+
"optimization_config = OptimizationConfig(optimization_level=99) # enable all optimizations\n",
|
232 |
+
"\n",
|
233 |
+
"# Optimize the model\n",
|
234 |
+
"optimizer.optimize(save_dir=onnx_path, optimization_config=optimization_config)"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": 12,
|
240 |
+
"metadata": {},
|
241 |
+
"outputs": [],
|
242 |
+
"source": [
|
243 |
+
"# create ORTQuantizer and define quantization configuration\n",
|
244 |
+
"dynamic_quantizer = ORTQuantizer.from_pretrained(onnx_path, file_name=\"model_optimized.onnx\")\n",
|
245 |
+
"dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)\n",
|
246 |
+
"\n",
|
247 |
+
"# apply the quantization configuration to the model\n",
|
248 |
+
"model_quantized_path = dynamic_quantizer.quantize(\n",
|
249 |
+
" save_dir=onnx_path,\n",
|
250 |
+
" quantization_config=dqconfig,\n",
|
251 |
+
")\n"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "markdown",
|
256 |
+
"metadata": {},
|
257 |
+
"source": [
|
258 |
+
"## 3. Create Custom Handler for Inference Endpoints\n"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": 1,
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [
|
266 |
+
{
|
267 |
+
"name": "stdout",
|
268 |
+
"output_type": "stream",
|
269 |
+
"text": [
|
270 |
+
"Overwriting handler.py\n"
|
271 |
+
]
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"%%writefile handler.py\n",
|
276 |
+
"from typing import Dict, List, Any\n",
|
277 |
+
"from optimum.onnxruntime import ORTModelForQuestionAnswering\n",
|
278 |
+
"from transformers import AutoTokenizer, pipeline\n",
|
279 |
+
"\n",
|
280 |
+
"\n",
|
281 |
+
"class EndpointHandler():\n",
|
282 |
+
" def __init__(self, path=\"\"):\n",
|
283 |
+
" # load the optimized model\n",
|
284 |
+
" self.model = ORTModelForQuestionAnswering.from_pretrained(path, file_name=\"model_optimized_quantized.onnx\")\n",
|
285 |
+
" self.tokenizer = AutoTokenizer.from_pretrained(path)\n",
|
286 |
+
" # create pipeline\n",
|
287 |
+
" self.pipeline = pipeline(\"question-answering\", model=self.model, tokenizer=self.tokenizer)\n",
|
288 |
+
"\n",
|
289 |
+
" def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
|
290 |
+
" \"\"\"\n",
|
291 |
+
" Args:\n",
|
292 |
+
" data (:obj:):\n",
|
293 |
+
" includes the input data and the parameters for the inference.\n",
|
294 |
+
" Return:\n",
|
295 |
+
" A :obj:`list`:. The list contains the answer and scores of the inference inputs\n",
|
296 |
+
" \"\"\"\n",
|
297 |
+
" inputs = data.get(\"inputs\", data)\n",
|
298 |
+
" # run the model\n",
|
299 |
+
" prediction = self.pipeline(**inputs)\n",
|
300 |
+
" # return prediction\n",
|
301 |
+
" return prediction"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "markdown",
|
306 |
+
"metadata": {},
|
307 |
+
"source": [
|
308 |
+
"## 4. Test Custom Handler Locally\n"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": 2,
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [
|
316 |
+
{
|
317 |
+
"data": {
|
318 |
+
"text/plain": [
|
319 |
+
"{'score': 0.4749588668346405,\n",
|
320 |
+
" 'start': 88,\n",
|
321 |
+
" 'end': 102,\n",
|
322 |
+
" 'answer': 'Technical Lead'}"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
"execution_count": 2,
|
326 |
+
"metadata": {},
|
327 |
+
"output_type": "execute_result"
|
328 |
+
}
|
329 |
+
],
|
330 |
+
"source": [
|
331 |
+
"from handler import EndpointHandler\n",
|
332 |
+
"\n",
|
333 |
+
"# init handler\n",
|
334 |
+
"my_handler = EndpointHandler(path=\".\")\n",
|
335 |
+
"\n",
|
336 |
+
"# prepare sample payload\n",
|
337 |
+
"context=\"Hello, my name is Philipp and I live in Nuremberg, Germany. Currently I am working as a Technical Lead at Hugging Face to democratize artificial intelligence through open source and open science. In the past I designed and implemented cloud-native machine learning architectures for fin-tech and insurance companies. I found my passion for cloud concepts and machine learning 5 years ago. Since then I never stopped learning. Currently, I am focusing myself in the area NLP and how to leverage models like BERT, Roberta, T5, ViT, and GPT2 to generate business value.\" \n",
|
338 |
+
"question=\"As what is Philipp working?\" \n",
|
339 |
+
"\n",
|
340 |
+
"payload = {\"inputs\": {\"question\": question, \"context\": context}}\n",
|
341 |
+
"\n",
|
342 |
+
"# test the handler\n",
|
343 |
+
"my_handler(payload)"
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"cell_type": "code",
|
348 |
+
"execution_count": 5,
|
349 |
+
"metadata": {},
|
350 |
+
"outputs": [
|
351 |
+
{
|
352 |
+
"name": "stdout",
|
353 |
+
"output_type": "stream",
|
354 |
+
"text": [
|
355 |
+
"Optimized & Quantized model Average latency (ms) - 29.90 +\\- 0.53\n"
|
356 |
+
]
|
357 |
+
}
|
358 |
+
],
|
359 |
+
"source": [
|
360 |
+
"from time import perf_counter\n",
|
361 |
+
"import numpy as np \n",
|
362 |
+
"\n",
|
363 |
+
"def measure_latency(handler,payload):\n",
|
364 |
+
" latencies = []\n",
|
365 |
+
" # warm up\n",
|
366 |
+
" for _ in range(10):\n",
|
367 |
+
" _ = handler(payload)\n",
|
368 |
+
" # Timed run\n",
|
369 |
+
" for _ in range(50):\n",
|
370 |
+
" start_time = perf_counter()\n",
|
371 |
+
" _ = handler(payload)\n",
|
372 |
+
" latency = perf_counter() - start_time\n",
|
373 |
+
" latencies.append(latency)\n",
|
374 |
+
" # Compute run statistics\n",
|
375 |
+
" time_avg_ms = 1000 * np.mean(latencies)\n",
|
376 |
+
" time_std_ms = 1000 * np.std(latencies)\n",
|
377 |
+
" return f\"Average latency (ms) - {time_avg_ms:.2f} +\\- {time_std_ms:.2f}\"\n",
|
378 |
+
"\n",
|
379 |
+
"print(f\"Optimized & Quantized model {measure_latency(my_handler,payload)}\")"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "markdown",
|
384 |
+
"metadata": {},
|
385 |
+
"source": [
|
386 |
+
"`Vanilla model Average latency (ms) - 64.15 +\\- 2.44`"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"cell_type": "markdown",
|
391 |
+
"metadata": {},
|
392 |
+
"source": [
|
393 |
+
"## 5. Push to repository and create Inference Endpoint\n"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": null,
|
399 |
+
"metadata": {},
|
400 |
+
"outputs": [],
|
401 |
+
"source": [
|
402 |
+
"# add all our new files\n",
|
403 |
+
"!git add * \n",
|
404 |
+
"# commit our files\n",
|
405 |
+
"!git commit -m \"add custom handler\"\n",
|
406 |
+
"# push the files to the hub\n",
|
407 |
+
"!git push"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"metadata": {
|
412 |
+
"kernelspec": {
|
413 |
+
"display_name": "Python 3.9.12 ('az': conda)",
|
414 |
+
"language": "python",
|
415 |
+
"name": "python3"
|
416 |
+
},
|
417 |
+
"language_info": {
|
418 |
+
"codemirror_mode": {
|
419 |
+
"name": "ipython",
|
420 |
+
"version": 3
|
421 |
+
},
|
422 |
+
"file_extension": ".py",
|
423 |
+
"mimetype": "text/x-python",
|
424 |
+
"name": "python",
|
425 |
+
"nbconvert_exporter": "python",
|
426 |
+
"pygments_lexer": "ipython3",
|
427 |
+
"version": "3.9.12"
|
428 |
+
},
|
429 |
+
"orig_nbformat": 4,
|
430 |
+
"vscode": {
|
431 |
+
"interpreter": {
|
432 |
+
"hash": "bddb99ecda5b40a820d97bf37f3ff3a89fb9dbcf726ae84d28624ac628a665b4"
|
433 |
+
}
|
434 |
+
}
|
435 |
+
},
|
436 |
+
"nbformat": 4,
|
437 |
+
"nbformat_minor": 2
|
438 |
+
}
|
ort_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"opset": null,
|
3 |
+
"optimization": {},
|
4 |
+
"optimum_version": "1.4.0",
|
5 |
+
"quantization": {
|
6 |
+
"activations_dtype": "QUInt8",
|
7 |
+
"activations_symmetric": false,
|
8 |
+
"format": "QOperator",
|
9 |
+
"is_static": false,
|
10 |
+
"mode": "IntegerOps",
|
11 |
+
"nodes_to_exclude": [],
|
12 |
+
"nodes_to_quantize": [],
|
13 |
+
"operators_to_quantize": [
|
14 |
+
"MatMul",
|
15 |
+
"Add"
|
16 |
+
],
|
17 |
+
"per_channel": false,
|
18 |
+
"qdq_add_pair_to_weight": false,
|
19 |
+
"qdq_dedicated_pair": false,
|
20 |
+
"qdq_op_type_per_channel_support_to_axis": {
|
21 |
+
"MatMul": 1
|
22 |
+
},
|
23 |
+
"reduce_range": false,
|
24 |
+
"weights_dtype": "QInt8",
|
25 |
+
"weights_symmetric": true
|
26 |
+
},
|
27 |
+
"transformers_version": "4.21.3",
|
28 |
+
"use_external_data_format": false
|
29 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
optimum[onnxruntime]==1.4.0
|
2 |
+
mkl-include
|
3 |
+
mkl
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"cls_token": {
|
12 |
+
"__type": "AddedToken",
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"do_lower_case": false,
|
20 |
+
"eos_token": {
|
21 |
+
"__type": "AddedToken",
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"errors": "replace",
|
29 |
+
"full_tokenizer_file": null,
|
30 |
+
"mask_token": {
|
31 |
+
"__type": "AddedToken",
|
32 |
+
"content": "<mask>",
|
33 |
+
"lstrip": true,
|
34 |
+
"normalized": true,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
"model_max_length": 512,
|
39 |
+
"name_or_path": "deepset/roberta-base-squad2",
|
40 |
+
"pad_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "<pad>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": false
|
47 |
+
},
|
48 |
+
"sep_token": {
|
49 |
+
"__type": "AddedToken",
|
50 |
+
"content": "</s>",
|
51 |
+
"lstrip": false,
|
52 |
+
"normalized": true,
|
53 |
+
"rstrip": false,
|
54 |
+
"single_word": false
|
55 |
+
},
|
56 |
+
"special_tokens_map_file": "/home/ubuntu/.cache/huggingface/transformers/c9d2c178fac8d40234baa1833a3b1903d393729bf93ea34da247c07db24900d0.cb2244924ab24d706b02fd7fcedaea4531566537687a539ebb94db511fd122a0",
|
57 |
+
"tokenizer_class": "RobertaTokenizer",
|
58 |
+
"trim_offsets": true,
|
59 |
+
"unk_token": {
|
60 |
+
"__type": "AddedToken",
|
61 |
+
"content": "<unk>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false
|
66 |
+
}
|
67 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|