File size: 1,498 Bytes
feaf6f5 d2d0def feaf6f5 c66ffd6 feaf6f5 c66ffd6 feaf6f5 d2d0def feaf6f5 48c4322 05bddc6 feaf6f5 d2d0def feaf6f5 e3aca79 feaf6f5 d2d0def feaf6f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
base_model: codellama/CodeLlama-7b-hf
library_name: peft
license: llama2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: finetune-llama-7b-text-to-sql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Finetuning Llama-7b on text-to-sql task
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context).
## Training and evaluation data
The model is trained on 10,000 random samples from [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context).
It is trained in a manner described by [Phil Schmid here](https://www.philschmid.de/fine-tune-llms-in-2024-with-trl).
## Training hyperparameters
| Hyperparameter | Value |
| -------------- | ----- |
| learning_rate | 0.0002 |
| train_batch_size | 50 |
| eval_batch_size | 8 |
| seed | 42 |
| gradient_accumulation_steps | 2 |
| total_train_batch_size | 100 |
| optimizer | Adam with betas=(0.9,0.999) and epsilon=1e-08 |
| lr_scheduler_type | constant |
| lr_scheduler_warmup_ratio | 0.03 |
| num_epochs | 3 |
## Training results
![Train loss](train_loss.png)
## Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 |