File size: 1,498 Bytes
feaf6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2d0def
feaf6f5
c66ffd6
feaf6f5
 
 
 
c66ffd6
 
feaf6f5
 
d2d0def
feaf6f5
48c4322
 
05bddc6
 
 
 
 
 
 
 
 
 
feaf6f5
d2d0def
feaf6f5
e3aca79
feaf6f5
 
d2d0def
feaf6f5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
base_model: codellama/CodeLlama-7b-hf
library_name: peft
license: llama2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: finetune-llama-7b-text-to-sql
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Finetuning Llama-7b on text-to-sql task

This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context).


## Training and evaluation data

The model is trained on 10,000 random samples from [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context).
It is trained in a manner described by [Phil Schmid here](https://www.philschmid.de/fine-tune-llms-in-2024-with-trl).


## Training hyperparameters

| Hyperparameter | Value |
| -------------- | ----- |
| learning_rate | 0.0002 | 
| train_batch_size | 50 | 
| eval_batch_size | 8 | 
| seed | 42 | 
| gradient_accumulation_steps | 2 | 
| total_train_batch_size | 100 | 
| optimizer | Adam with betas=(0.9,0.999) and epsilon=1e-08 | 
| lr_scheduler_type | constant | 
| lr_scheduler_warmup_ratio | 0.03 | 
| num_epochs | 3 | 

## Training results

![Train loss](train_loss.png)


## Framework versions

- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2