ramsri818 commited on
Commit
454e263
1 Parent(s): 1176fb5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -8
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: ast-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 0.4435
21
- - eval_accuracy: 0.9
22
- - eval_runtime: 12.0837
23
- - eval_samples_per_second: 8.276
24
- - eval_steps_per_second: 2.069
25
- - epoch: 4.0
26
- - step: 900
27
 
28
  ## Model description
29
 
@@ -51,6 +61,32 @@ The following hyperparameters were used during training:
51
  - lr_scheduler_warmup_ratio: 0.1
52
  - num_epochs: 20
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  ### Framework versions
55
 
56
  - Transformers 4.32.0.dev0
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: ast-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.93
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4436
36
+ - Accuracy: 0.93
 
 
 
 
 
37
 
38
  ## Model description
39
 
 
61
  - lr_scheduler_warmup_ratio: 0.1
62
  - num_epochs: 20
63
 
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.0001 | 1.0 | 225 | 0.5546 | 0.89 |
69
+ | 1.204 | 2.0 | 450 | 0.9484 | 0.81 |
70
+ | 0.4719 | 3.0 | 675 | 0.7417 | 0.85 |
71
+ | 0.0132 | 4.0 | 900 | 0.7101 | 0.9 |
72
+ | 0.0527 | 5.0 | 1125 | 0.8170 | 0.86 |
73
+ | 0.0 | 6.0 | 1350 | 0.6406 | 0.93 |
74
+ | 0.3099 | 7.0 | 1575 | 0.8426 | 0.84 |
75
+ | 0.0 | 8.0 | 1800 | 0.9173 | 0.89 |
76
+ | 0.0 | 9.0 | 2025 | 0.7142 | 0.9 |
77
+ | 0.0602 | 10.0 | 2250 | 0.4718 | 0.92 |
78
+ | 0.0003 | 11.0 | 2475 | 0.9860 | 0.9 |
79
+ | 0.0001 | 12.0 | 2700 | 0.5918 | 0.91 |
80
+ | 0.0 | 13.0 | 2925 | 0.4886 | 0.92 |
81
+ | 0.0 | 14.0 | 3150 | 0.4562 | 0.93 |
82
+ | 0.0 | 15.0 | 3375 | 0.4360 | 0.94 |
83
+ | 0.0 | 16.0 | 3600 | 0.4433 | 0.94 |
84
+ | 0.0 | 17.0 | 3825 | 0.4454 | 0.94 |
85
+ | 0.0 | 18.0 | 4050 | 0.4454 | 0.94 |
86
+ | 0.0 | 19.0 | 4275 | 0.4434 | 0.93 |
87
+ | 0.0 | 20.0 | 4500 | 0.4436 | 0.93 |
88
+
89
+
90
  ### Framework versions
91
 
92
  - Transformers 4.32.0.dev0