File size: 28,802 Bytes
48ad398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
from torch.nn import Linear, Embedding
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import os
import bz2
import torch
import base64
import ctypes
from typing import List
from functools import partial
try:
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
class Kernel:
def __init__(self, code: bytes, function_names: List[str]):
self.code = code
self._function_names = function_names
self._cmodule = LazyKernelCModule(self.code)
for name in self._function_names:
setattr(self, name, KernelFunction(self._cmodule, name))
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
kernels = Kernel(
bz2.decompress(base64.b64decode(quantization_code)),
[
"int4WeightCompression",
"int4WeightExtractionFloat",
"int4WeightExtractionHalf",
"int8WeightExtractionFloat",
"int8WeightExtractionHalf",
],
)
except Exception as exception:
kernels = None
print("Failed to load cpm_kernels:", exception)
class W8A16Linear(torch.autograd.Function):
@staticmethod
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
ctx.inp_shape = inp.size()
ctx.weight_shape = quant_w.size()
ctx.weight_bit_width = weight_bit_width
out_features = quant_w.size(0)
inp = inp.contiguous().view(-1, inp.size(-1))
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
output = inp.mm(weight.t())
ctx.save_for_backward(inp, quant_w, scale_w)
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
@staticmethod
def backward(ctx, grad_output: torch.Tensor):
inp, quant_w, scale_w = ctx.saved_tensors
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
grad_output = grad_output.contiguous().view(-1, weight.size(0))
grad_input = grad_output.mm(weight)
grad_weight = grad_output.t().mm(inp)
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
class W8A16LinearCPU(torch.autograd.Function):
@staticmethod
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width, quantization_cache=None):
ctx.inp_shape = inp.size()
ctx.weight_shape = quant_w.size()
ctx.weight_bit_width = weight_bit_width
out_features = quant_w.size(0)
inp = inp.contiguous().view(-1, inp.size(-1))
weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
output = inp.mm(weight.t())
ctx.save_for_backward(inp, quant_w, scale_w)
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
@staticmethod
def backward(ctx, grad_output: torch.Tensor):
inp, quant_w, scale_w = ctx.saved_tensors
weight = extract_weight_to_float(quant_w, scale_w, ctx.weight_bit_width)
grad_output = grad_output.contiguous().view(-1, weight.size(0))
grad_input = grad_output.mm(weight)
grad_weight = grad_output.t().mm(inp)
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
default_cpu_kernel_code = "QlpoOTFBWSZTWXLbSoQAAgzbgERwQXxmTwAAr/ff3kABt0Q2oRVT0hpo9RtEAAAAyBEiSQ9EGjQGQAAAwANGhowjJoNGmgMEUplMTNSMJ5TQaDJpsoMyRMj8P4mZzFSVVwqSXG8GG7MlVwiToYEQwVD7noBxMhNfkeZYtYFtbgOBUSIGtIQjhNHCEnPJsadhb3yBmRIOD3TeAtNLSaU5GgvKUBWSNuuOIHmVt0YhW6rsmDMDUjeUJGJ64R1Jm5lrh0Aa0tKjhFwPdWcGogxLDSXPWQUWTM8Sd3Qz1HMYNxx3HMeiNqNo4jeRDEfZ3gUSHIcU/heomq0vEzL1Msz5KKGxH8FrNOYw3KaxdqaEmNHYMxJFgQbR0DyRknL2L4kwUSxKRdhjRpEtUqilVfggFL1klaMS3PPRDfNqbBOPWO7m4JTVGhS9QTBDDJaEbLbrUQNB+IpJSKQbG5SZZ5gkwJEhJ3aYKJipZ/i7kinChIOW2lQg"
default_cpu_parallel_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels_parallel.c")
default_cpu_parallel_kernel_code = "QlpoOTFBWSZTWZzWK2UAALXbgERwSX1mTwAAr/ff3kACNyXSbZYwBpoaNGIyAaADQwRRFT/UKDINANqAD1NABFQlPUzaaJHppGRmoAG01ARKKaaMp4gmgaNAaDQDIKVKfZ/g6v1Kem5ZsWZmZtSXS5ZwRAzKmjr1E1lKMEoQNCPkEYPACgcR5I9w/0k6JrJYHqFuHnChcD7N+DHeOQ0ajF83Tc40jgmQbOB5wt3TEHyTObDBLoxrJGBuJmNbxYZwAoKTjbIcI7GsbuVRERAR8wqwhXQjQOxiHQlgSnHjQjddXERojNmQYJJVoM2xxawMeI9asi6E1rfd7GO8S0S5vacCNGry4F1nyZbcTvSBXEMipuPfM7i0Y8kjirpbxb05jpIQjCGE8DYBNCAZyHz9EoOpDRST/I1aFCNpcjoXgyc3NjVsUvYIaYq7xopYJqcxg2g4qXofm7AaGNTzJSNguOQw4utKcEl0F1UOgI+T1hk5LusbGZ9udC1CiBeGwwFxR/QdbZDndehRPxyGt3Me1DBW45MXIY24ZD30aFNuSEUdu5LWx1sSJWLGgsmqUIFTgWhU0gfxXpzhghr2AYpV3hE06mGk1I2JyuZiFgkiz/i7kinChITmsVso"
cpu_kernels = None
class CPUKernel:
def __init__(self, kernel_file="", source_code=default_cpu_kernel_code_path, compile_parallel_kernel=None, parallel_num=None):
self.load =False
self.int8WeightExtractionFloat = None
self.int4WeightExtractionFloat = None
self.int4WeightCompression = None
self.SetNumThreads = None
try:
if not os.path.exists(default_cpu_kernel_code_path):
with open(default_cpu_kernel_code_path, "w", encoding="utf-8") as file:
code = default_cpu_kernel_code
cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
file.write(cpu_quantization_code)
if not os.path.exists(default_cpu_parallel_kernel_code_path):
with open(default_cpu_parallel_kernel_code_path, "w", encoding="utf-8") as file:
code = default_cpu_parallel_kernel_code
cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
file.write(cpu_quantization_code)
except Exception as ex:
print("Error when generating default cpu kernel code(can be ignored when using custom kernels).")
if compile_parallel_kernel is None:
compile_parallel_kernel = bool(int(os.cpu_count()) >= 4)
if compile_parallel_kernel and source_code == default_cpu_kernel_code_path:
source_code = default_cpu_parallel_kernel_code_path
if (not kernel_file) or (not os.path.exists(kernel_file)):
print("No compiled kernel found.")
try:
if os.path.exists(source_code):
print("Compiling kernels :", source_code)
kernel_file = source_code[:-2] + ".so"
if compile_parallel_kernel:
compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
print("Compiling", compile_command)
exit_state = os.system(compile_command)
if exit_state:
print("Compile failed, using default cpu kernel code.")
compile_parallel_kernel = False
source_code = default_cpu_kernel_code_path
kernel_file = source_code[:-2] + ".so"
compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
print("Compiling", compile_command)
else:
compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
print("Compiling", compile_command)
exit_state = os.system(compile_command)
print("Kernels compiled :", kernel_file)
else:
print("Kernel source code not found.")
return
except:
print("Failed to build kernel.")
return
if kernel_file:
kernels = ctypes.cdll.LoadLibrary(kernel_file)
self.int8WeightExtractionFloat = kernels.extract_int8_weight_to_float
self.int4WeightExtractionFloat = kernels.extract_int4_weight_to_float
self.int4WeightCompression = kernels.compress_int4_weight
if compile_parallel_kernel:
try:
self.SetNumThreads = kernels.set_num_threads
except:
print("No set_num_threads() found in kernel.")
self.SetNumThreads = lambda x: x
self.load = True
print("Load kernel :", kernel_file)
else:
print("Failed to load kernel.")
if compile_parallel_kernel:
if parallel_num is None:
parallel_num = max(os.cpu_count() // 2, 1)
print("Setting CPU quantization kernel threads to", parallel_num)
if parallel_num < 4:
print("Parallel kernel is not recommended when parallel num < 4.")
self.SetNumThreads(parallel_num)
self.parallel_num = parallel_num
def compress_int4_weight(weight: torch.Tensor): # (n, m)
"""compress weight on cpu or cuda to int4"""
if weight.device == torch.device("cpu"):
assert isinstance(cpu_kernels, CPUKernel)
n, m = weight.size(0), weight.size(1)
assert m % 2 == 0
m = m // 2
out = torch.empty(n, m, dtype=torch.int8, device="cpu")
cpu_kernels.int4WeightCompression(
ctypes.c_void_p(weight.data_ptr()),
ctypes.c_void_p(out.data_ptr()),
ctypes.c_int32(n),
ctypes.c_int32(m)
)
return out
else:
with torch.cuda.device(weight.device):
n, m = weight.size(0), weight.size(1)
assert m % 2 == 0
m = m // 2
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
stream = torch.cuda.current_stream()
gridDim = (n, 1, 1)
blockDim = (min(round_up(m, 32), 1024), 1, 1)
kernels.int4WeightCompression(
gridDim,
blockDim,
0,
stream,
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
)
return out
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
if source_bit_width == 8:
func = kernels.int8WeightExtractionHalf
elif source_bit_width == 4:
func = kernels.int4WeightExtractionHalf
else:
assert False, "Unsupported bit-width"
with torch.cuda.device(weight.device):
n, m = weight.size(0), weight.size(1)
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
stream = torch.cuda.current_stream()
gridDim = (n, 1, 1)
blockDim = (min(round_up(m, 32), 1024), 1, 1)
func(
gridDim,
blockDim,
0,
stream,
[
ctypes.c_void_p(weight.data_ptr()),
ctypes.c_void_p(scale_list.data_ptr()),
ctypes.c_void_p(out.data_ptr()),
ctypes.c_int32(n),
ctypes.c_int32(m),
],
)
return out
def extract_weight_to_float(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int, quantization_cache=None):
"""extract weight on cpu to float32"""
if source_bit_width == 8:
func = cpu_kernels.int8WeightExtractionFloat
elif source_bit_width == 4:
func = cpu_kernels.int4WeightExtractionFloat
else:
assert False, "Unsupported bit-width"
n, m = weight.size(0), weight.size(1)
if quantization_cache is not None:
out = quantization_cache
func(
ctypes.c_void_p(weight.data_ptr()),
ctypes.c_void_p(scale_list.data_ptr()),
ctypes.c_void_p(out.data_ptr()),
ctypes.c_int32(n),
ctypes.c_int32(m)
)
return out.tensor
else:
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.float, device="cpu")
func(
ctypes.c_void_p(weight.data_ptr()),
ctypes.c_void_p(scale_list.data_ptr()),
ctypes.c_void_p(out.data_ptr()),
ctypes.c_int32(n),
ctypes.c_int32(m)
)
return out
class CacheTensor():
def __init__(self, *args, **kwargs):
self.tensor = torch.empty(*args, **kwargs)
def to(self, *args, **kwargs):
self.tensor = self.tensor.to(*args, **kwargs)
def data_ptr(self):
return self.tensor.data_ptr()
class QuantizedLinear(Linear):
def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, quantized_weight=None, quantized_weight_scale=None, quantization_cache=None, empty_init=False, *args, **kwargs):
super(QuantizedLinear, self).__init__(*args, **kwargs)
self.weight_bit_width = weight_bit_width
self.quantization_cache = quantization_cache
if (quantized_weight is not None) and (quantized_weight_scale is not None):
del self.weight
self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
else:
shape = self.weight.shape
del self.weight
if weight_tensor is None or empty_init:
self.weight = torch.empty(
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
)
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
else:
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).to(kwargs["dtype"])
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
if weight_bit_width == 4:
self.weight = compress_int4_weight(self.weight)
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
if bias_tensor is not None:
self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
else:
self.bias = None
def reset_parameters(self):
"""To accelerate initialization"""
pass
def forward(self, input):
if self.weight.device == torch.device("cpu"):
output = W8A16LinearCPU.apply(input, self.weight, self.weight_scale, self.weight_bit_width, self.quantization_cache)
else:
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
if self.bias is not None:
output = output + self.bias
return output
def _apply(self, fn):
self_obj = super()._apply(fn)
if self.quantization_cache is not None:
self.quantization_cache.to(self_obj.weight.device)
self.quantization_cache.to(self_obj.weight_scale.dtype)
return self_obj
class QuantizedEmbedding(Embedding): # TODO: backward, check empty_init
def __init__(self, weight_bit_width: int, weight_tensor=None, quantized_weight=None, quantized_weight_scale=None, empty_init=False, *args, **kwargs):
super(QuantizedEmbedding, self).__init__(*args, **kwargs)
self.weight_bit_width = weight_bit_width
if (quantized_weight is not None) and (quantized_weight_scale is not None):
del self.weight
self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
else:
shape = self.weight.shape
del self.weight
if weight_tensor is None or empty_init:
self.weight = torch.empty(
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
)
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
else:
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
if weight_bit_width == 4:
self.weight = compress_int4_weight(self.weight)
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
def forward(self, input):
if self.weight.device == torch.device("cpu"):
original_weight = extract_weight_to_float(weight=self.weight, scale_list=self.weight_scale, source_bit_width=self.weight_bit_width)
else:
original_weight = extract_weight_to_half(weight=self.weight, scale_list=self.weight_scale, source_bit_width=self.weight_bit_width)
output = F.embedding(
input, original_weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse
)
return output
def load_cpu_kernel(**kwargs):
global cpu_kernels
cpu_kernels = CPUKernel(**kwargs)
assert cpu_kernels.load
def quantize(model, weight_bit_width, use_quantization_cache=False, empty_init=False, **kwargs):
"""Replace fp16 linear with quantized linear"""
query_key_value_quantization_cache = None
dense_quantization_cache = None
dense_h_to_4h_quantization_cache = None
dense_4h_to_h_quantization_cache = None
try:
load_cpu_kernel(**kwargs)
except:
print("Cannot load cpu kernel, don't use quantized model on cpu.")
if kernels is None: # CUDA kernels failed
print("Cannot load cuda kernel, quantization failed.")
return model
current_device = model.device
if model.device == torch.device("cpu"):
dtype=torch.float32
else:
dtype = torch.half
QuantizedLinearWithPara = partial(
QuantizedLinear,
weight_bit_width=weight_bit_width,
bias=True,
dtype=dtype,
empty_init=empty_init
)
if use_quantization_cache:
print("Using quantization cache")
layer = model.layers[0]
weight = layer.attention.query_key_value.weight
n, m = weight.size(0), weight.size(1)
query_key_value_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
weight = layer.attention.dense.weight
n, m = weight.size(0), weight.size(1)
dense_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
weight = layer.mlp.dense_h_to_4h.weight
n, m = weight.size(0), weight.size(1)
dense_h_to_4h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
weight = layer.mlp.dense_4h_to_h.weight
n, m = weight.size(0), weight.size(1)
dense_4h_to_h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
print("Applying quantization to glm layers")
for layer in model.layers:
layer.attention.query_key_value = QuantizedLinearWithPara(
weight_tensor=layer.attention.query_key_value.weight.to(current_device),
bias_tensor=layer.attention.query_key_value.bias,
in_features=layer.attention.query_key_value.in_features,
out_features=layer.attention.query_key_value.out_features,
device=layer.attention.query_key_value.weight.device,
quantization_cache=query_key_value_quantization_cache
)
layer.attention.dense = QuantizedLinearWithPara(
weight_tensor=layer.attention.dense.weight.to(current_device),
bias_tensor=layer.attention.dense.bias,
in_features=layer.attention.dense.in_features,
out_features=layer.attention.dense.out_features,
device=layer.attention.dense.weight.device,
quantization_cache=dense_quantization_cache
)
layer.mlp.dense_h_to_4h = QuantizedLinearWithPara(
weight_tensor=layer.mlp.dense_h_to_4h.weight.to(current_device),
bias_tensor=layer.mlp.dense_h_to_4h.bias,
in_features=layer.mlp.dense_h_to_4h.in_features,
out_features=layer.mlp.dense_h_to_4h.out_features,
device=layer.mlp.dense_h_to_4h.weight.device,
quantization_cache=dense_h_to_4h_quantization_cache
)
layer.mlp.dense_4h_to_h = QuantizedLinearWithPara(
weight_tensor=layer.mlp.dense_4h_to_h.weight.to(current_device),
bias_tensor=layer.mlp.dense_4h_to_h.bias,
in_features=layer.mlp.dense_4h_to_h.in_features,
out_features=layer.mlp.dense_4h_to_h.out_features,
device=layer.mlp.dense_4h_to_h.weight.device,
quantization_cache=dense_4h_to_h_quantization_cache
)
return model
|