asahi417 commited on
Commit
9d01ed4
1 Parent(s): 76446c0

model update

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -21,7 +21,7 @@ widget:
21
  - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
22
  example_title: "Question Generation Example 3"
23
  model-index:
24
- - name: lmqg/t5-base-subjqa-vanilla-books
25
  results:
26
  - task:
27
  name: Text2text Generation
@@ -48,7 +48,7 @@ model-index:
48
  value: 50.99
49
  ---
50
 
51
- # Model Card of `lmqg/t5-base-subjqa-vanilla-books`
52
  This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: books) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
@@ -66,7 +66,7 @@ This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) fo
66
  from lmqg import TransformersQG
67
 
68
  # initialize model
69
- model = TransformersQG(language="en", model="lmqg/t5-base-subjqa-vanilla-books")
70
 
71
  # model prediction
72
  questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
@@ -77,7 +77,7 @@ questions = model.generate_q(list_context="William Turner was an English painter
77
  ```python
78
  from transformers import pipeline
79
 
80
- pipe = pipeline("text2text-generation", "lmqg/t5-base-subjqa-vanilla-books")
81
  output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
82
 
83
  ```
@@ -85,7 +85,7 @@ output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting
85
  ## Evaluation
86
 
87
 
88
- - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-base-subjqa-vanilla-books/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json)
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:-------|:-----------------------------------------------------------------|
@@ -119,7 +119,7 @@ The following hyperparameters were used during fine-tuning:
119
  - gradient_accumulation_steps: 8
120
  - label_smoothing: 0.15
121
 
122
- The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-base-subjqa-vanilla-books/raw/main/trainer_config.json).
123
 
124
  ## Citation
125
  ```
 
21
  - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
22
  example_title: "Question Generation Example 3"
23
  model-index:
24
+ - name: research-backup/t5-base-subjqa-vanilla-books-qg
25
  results:
26
  - task:
27
  name: Text2text Generation
 
48
  value: 50.99
49
  ---
50
 
51
+ # Model Card of `research-backup/t5-base-subjqa-vanilla-books-qg`
52
  This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: books) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
 
66
  from lmqg import TransformersQG
67
 
68
  # initialize model
69
+ model = TransformersQG(language="en", model="research-backup/t5-base-subjqa-vanilla-books-qg")
70
 
71
  # model prediction
72
  questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
 
77
  ```python
78
  from transformers import pipeline
79
 
80
+ pipe = pipeline("text2text-generation", "research-backup/t5-base-subjqa-vanilla-books-qg")
81
  output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
82
 
83
  ```
 
85
  ## Evaluation
86
 
87
 
88
+ - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/research-backup/t5-base-subjqa-vanilla-books-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json)
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:-------|:-----------------------------------------------------------------|
 
119
  - gradient_accumulation_steps: 8
120
  - label_smoothing: 0.15
121
 
122
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/research-backup/t5-base-subjqa-vanilla-books-qg/raw/main/trainer_config.json).
123
 
124
  ## Citation
125
  ```