Update README.md
Browse files
README.md
CHANGED
@@ -25,10 +25,10 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
-
value:
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
-
value:
|
32 |
- task:
|
33 |
name: Automatic Speech Recognition
|
34 |
type: automatic-speech-recognition
|
@@ -39,20 +39,20 @@ model-index:
|
|
39 |
metrics:
|
40 |
- name: Test WER
|
41 |
type: wer
|
42 |
-
value:
|
43 |
- name: Test CER
|
44 |
type: cer
|
45 |
-
value:
|
46 |
---
|
47 |
# sammy786/wav2vec2-xlsr-finnish
|
48 |
|
49 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-
|
50 |
It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, other, dev and validated datasets):
|
51 |
-
- Loss:
|
52 |
-
- Wer:
|
53 |
|
54 |
## Model description
|
55 |
-
"facebook/wav2vec2-xls-r-
|
56 |
|
57 |
## Intended uses & limitations
|
58 |
More information needed
|
@@ -67,36 +67,60 @@ For creating the train dataset, all possible datasets were appended and 90-10 sp
|
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
|
70 |
-
- learning_rate: 0.
|
71 |
-
- train_batch_size:
|
72 |
- eval_batch_size: 16
|
73 |
- seed: 13
|
74 |
-
- gradient_accumulation_steps:
|
75 |
-
- total_train_batch_size:
|
76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
- lr_scheduler_type: cosine_with_restarts
|
78 |
- lr_scheduler_warmup_steps: 500
|
79 |
-
- num_epochs:
|
80 |
- mixed_precision_training: Native AMP
|
81 |
|
82 |
|
83 |
### Training results
|
84 |
|
85 |
|
86 |
-
| Step
|
87 |
-
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
|
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
|
102 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
+
value: 13.341
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
+
value: 3.23
|
32 |
- task:
|
33 |
name: Automatic Speech Recognition
|
34 |
type: automatic-speech-recognition
|
|
|
39 |
metrics:
|
40 |
- name: Test WER
|
41 |
type: wer
|
42 |
+
value: 13.341
|
43 |
- name: Test CER
|
44 |
type: cer
|
45 |
+
value: 3.23
|
46 |
---
|
47 |
# sammy786/wav2vec2-xlsr-finnish
|
48 |
|
49 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - fi dataset.
|
50 |
It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, other, dev and validated datasets):
|
51 |
+
- Loss: 8.7555
|
52 |
+
- Wer: 23.0231
|
53 |
|
54 |
## Model description
|
55 |
+
"facebook/wav2vec2-xls-r-1b" was finetuned.
|
56 |
|
57 |
## Intended uses & limitations
|
58 |
More information needed
|
|
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
|
70 |
+
- learning_rate: 0.000045637994662983496
|
71 |
+
- train_batch_size: 8
|
72 |
- eval_batch_size: 16
|
73 |
- seed: 13
|
74 |
+
- gradient_accumulation_steps: 4
|
75 |
+
- total_train_batch_size: 32
|
76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
- lr_scheduler_type: cosine_with_restarts
|
78 |
- lr_scheduler_warmup_steps: 500
|
79 |
+
- num_epochs: 30
|
80 |
- mixed_precision_training: Native AMP
|
81 |
|
82 |
|
83 |
### Training results
|
84 |
|
85 |
|
86 |
+
| Step | Training Loss | Validation Loss | Wer |
|
87 |
+
|:----:|:-------------:|:---------------:|:--------:|
|
88 |
+
| 200 | 4.253700 | 0.881733 | 0.967007 |
|
89 |
+
| 400 | 0.864800 | 0.226977 | 0.420836 |
|
90 |
+
| 600 | 0.607000 | 0.157473 | 0.343375 |
|
91 |
+
| 800 | 0.380200 | 0.145640 | 0.302672 |
|
92 |
+
| 1000 | 0.318400 | 0.128028 | 0.293886 |
|
93 |
+
| 1200 | 0.261100 | 0.121414 | 0.289941 |
|
94 |
+
| 1400 | 0.232300 | 0.113451 | 0.279182 |
|
95 |
+
| 1600 | 0.216600 | 0.113649 | 0.282948 |
|
96 |
+
| 1800 | 0.202500 | 0.112375 | 0.276134 |
|
97 |
+
| 2000 | 0.190000 | 0.105725 | 0.273803 |
|
98 |
+
| 2200 | 0.171000 | 0.109715 | 0.270755 |
|
99 |
+
| 2400 | 0.156500 | 0.105042 | 0.264300 |
|
100 |
+
| 2600 | 0.155600 | 0.108337 | 0.260714 |
|
101 |
+
| 2800 | 0.149100 | 0.112435 | 0.263583 |
|
102 |
+
| 3000 | 0.145100 | 0.106193 | 0.261969 |
|
103 |
+
| 3200 | 0.131700 | 0.102860 | 0.251210 |
|
104 |
+
| 3400 | 0.129100 | 0.096058 | 0.246907 |
|
105 |
+
| 3600 | 0.121600 | 0.099932 | 0.246369 |
|
106 |
+
| 3800 | 0.112000 | 0.099041 | 0.244397 |
|
107 |
+
| 4000 | 0.114100 | 0.101566 | 0.242604 |
|
108 |
+
| 4200 | 0.111500 | 0.089498 | 0.239197 |
|
109 |
+
| 4400 | 0.099800 | 0.092835 | 0.240990 |
|
110 |
+
| 4600 | 0.095300 | 0.093518 | 0.238121 |
|
111 |
+
| 4800 | 0.094300 | 0.090783 | 0.240631 |
|
112 |
+
| 5000 | 0.089000 | 0.094046 | 0.238479 |
|
113 |
+
| 5200 | 0.088000 | 0.089342 | 0.235252 |
|
114 |
+
| 5400 | 0.083600 | 0.087770 | 0.234535 |
|
115 |
+
| 5600 | 0.083600 | 0.088804 | 0.234355 |
|
116 |
+
| 5800 | 0.080300 | 0.090168 | 0.231307 |
|
117 |
+
| 6000 | 0.078100 | 0.090163 | 0.230949 |
|
118 |
+
| 6200 | 0.075600 | 0.088876 | 0.232383 |
|
119 |
+
| 6400 | 0.078700 | 0.087235 | 0.232024 |
|
120 |
+
| 6600 | 0.074800 | 0.086825 | 0.231486 |
|
121 |
+
| 6800 | 0.076400 | 0.087308 | 0.231845 |
|
122 |
+
| 7000 | 0.070700 | 0.087695 | 0.230769 |
|
123 |
+
| 7200 | 0.075500 | 0.087555 | 0.230231 |
|
124 |
|
125 |
|
126 |
### Framework versions
|