|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Parler-TTS model configuration""" |
|
|
|
from transformers import AutoConfig, logging |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"facebook/parler_tts-small": "https://huggingface.co/facebook/parler_tts-small/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class ParlerTTSDecoderConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of an [`ParlerTTSDecoder`]. It is used to instantiate a |
|
Parler-TTS decoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the Parler-TTS |
|
[facebook/parler_tts-small](https://huggingface.co/facebook/parler_tts-small) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 2049): |
|
Vocabulary size of the ParlerTTSDecoder model. Defines the number of different tokens that can be |
|
represented by the `inputs_ids` passed when calling [`ParlerTTSDecoder`]. |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of decoder layers. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer block. |
|
ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically, set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
initializer_factor (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
scale_embedding (`bool`, *optional*, defaults to `False`): |
|
Scale embeddings by diving by sqrt(hidden_size). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether the model should return the last key/values attentions (not used by all models) |
|
num_codebooks (`int`, *optional*, defaults to 4): |
|
The number of parallel codebooks forwarded to the model. |
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`): |
|
Whether input and output word embeddings should be tied. |
|
rope_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to use ROPE or absolute positional embeddings. |
|
rope_theta (`float`, *optional*, defaults to 100000.0): |
|
The base period of the RoPE embeddings. |
|
""" |
|
|
|
model_type = "parler_tts_decoder" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=2049, |
|
max_position_embeddings=2048, |
|
num_hidden_layers=24, |
|
ffn_dim=4096, |
|
num_attention_heads=16, |
|
layerdrop=0.0, |
|
use_cache=True, |
|
activation_function="gelu", |
|
hidden_size=1024, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
initializer_factor=0.02, |
|
scale_embedding=False, |
|
num_codebooks=4, |
|
pad_token_id=2048, |
|
bos_token_id=2049, |
|
eos_token_id=2048, |
|
tie_word_embeddings=False, |
|
rope_embeddings=False, |
|
rope_theta=10_000.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.ffn_dim = ffn_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.initializer_factor = initializer_factor |
|
self.layerdrop = layerdrop |
|
self.use_cache = use_cache |
|
self.scale_embedding = scale_embedding |
|
self.num_codebooks = num_codebooks |
|
self.rope_embeddings = rope_embeddings |
|
self.rope_theta = rope_theta |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
class ParlerTTSConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ParlerTTSModel`]. It is used to instantiate a |
|
Parler-TTS model according to the specified arguments, defining the text encoder, audio encoder and Parler-TTS decoder |
|
configs. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 1024): |
|
Vocabulary size of the prompt token ids. Defines the number of different tokens that can be |
|
represented by the `prompt_inputs_ids`. |
|
prompt_cross_attention (`bool`, *optional*, defaults to `False`): |
|
Whether to use cross-attention conditioning for the prompt (as well as the description). |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. Notably: |
|
|
|
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that |
|
defines the text encoder config. |
|
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that |
|
defines the audio encoder config. |
|
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines |
|
the decoder config. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import ( |
|
... ParlerTTSConfig, |
|
... ParlerTTSDecoderConfig, |
|
... T5Config, |
|
... EncodecConfig, |
|
... ParlerTTSForConditionalGeneration, |
|
... ) |
|
|
|
>>> # Initializing text encoder, audio encoder, and decoder model configurations |
|
>>> text_encoder_config = T5Config() |
|
>>> audio_encoder_config = EncodecConfig() |
|
>>> decoder_config = ParlerTTSDecoderConfig() |
|
|
|
>>> configuration = ParlerTTSConfig.from_sub_models_config( |
|
... text_encoder_config, audio_encoder_config, decoder_config |
|
... ) |
|
|
|
>>> # Initializing a ParlerTTSForConditionalGeneration (with random weights) from the facebook/parler_tts-small style configuration |
|
>>> model = ParlerTTSForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
>>> config_text_encoder = model.config.text_encoder |
|
>>> config_audio_encoder = model.config.audio_encoder |
|
>>> config_decoder = model.config.decoder |
|
|
|
>>> # Saving the model, including its configuration |
|
>>> model.save_pretrained("parler_tts-model") |
|
|
|
>>> # loading model and config from pretrained folder |
|
>>> parler_tts_config = ParlerTTSConfig.from_pretrained("parler_tts-model") |
|
>>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler_tts-model", config=parler_tts_config) |
|
```""" |
|
|
|
model_type = "parler_tts" |
|
is_composition = True |
|
|
|
def __init__(self, vocab_size=1024, prompt_cross_attention=False, **kwargs): |
|
super().__init__(**kwargs) |
|
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs: |
|
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config") |
|
|
|
text_encoder_config = kwargs.pop("text_encoder") |
|
text_encoder_model_type = text_encoder_config.pop("model_type") |
|
|
|
audio_encoder_config = kwargs.pop("audio_encoder") |
|
audio_encoder_model_type = audio_encoder_config.pop("model_type") |
|
|
|
decoder_config = kwargs.pop("decoder") |
|
|
|
self.vocab_size = vocab_size |
|
self.prompt_cross_attention = prompt_cross_attention |
|
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config) |
|
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) |
|
self.decoder = ParlerTTSDecoderConfig(**decoder_config) |
|
self.is_encoder_decoder = True |
|
|
|
@classmethod |
|
def from_sub_models_config( |
|
cls, |
|
text_encoder_config: PretrainedConfig, |
|
audio_encoder_config: PretrainedConfig, |
|
decoder_config: ParlerTTSDecoderConfig, |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a [`ParlerTTSConfig`] (or a derived class) from text encoder, audio encoder and decoder |
|
configurations. |
|
|
|
Returns: |
|
[`ParlerTTSConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls( |
|
text_encoder=text_encoder_config.to_dict(), |
|
audio_encoder=audio_encoder_config.to_dict(), |
|
decoder=decoder_config.to_dict(), |
|
**kwargs, |
|
) |
|
|
|
@property |
|
|
|
def sampling_rate(self): |
|
return self.audio_encoder.sampling_rate |
|
|