Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1015 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: sentence-transformers
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:282883
|
12 |
+
- loss:MatryoshkaLoss
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
base_model: BAAI/bge-base-en-v1.5
|
15 |
+
datasets: []
|
16 |
+
metrics:
|
17 |
+
- cosine_accuracy@1
|
18 |
+
- cosine_accuracy@3
|
19 |
+
- cosine_accuracy@5
|
20 |
+
- cosine_accuracy@10
|
21 |
+
- cosine_precision@1
|
22 |
+
- cosine_precision@3
|
23 |
+
- cosine_precision@5
|
24 |
+
- cosine_precision@10
|
25 |
+
- cosine_recall@1
|
26 |
+
- cosine_recall@3
|
27 |
+
- cosine_recall@5
|
28 |
+
- cosine_recall@10
|
29 |
+
- cosine_ndcg@10
|
30 |
+
- cosine_mrr@10
|
31 |
+
- cosine_map@100
|
32 |
+
widget:
|
33 |
+
- source_sentence: Mwanamke anashona.
|
34 |
+
sentences:
|
35 |
+
- Mwanamke akishona blanketi pamoja.
|
36 |
+
- Lakini Sir James alimkatiza.
|
37 |
+
- Kwa kuongezea, wabunifu mashuhuri sasa wana maduka ya rejareja katika hoteli kadhaa
|
38 |
+
za ununuzi.
|
39 |
+
- source_sentence: Mtandao huwawezesha watu kununua vitu.
|
40 |
+
sentences:
|
41 |
+
- Mwanamke fulani anakata kipande cha jibini.
|
42 |
+
- Hakuna hata mmoja wa wafadhili hawa anayeweza kuruhusu kuacha sasa, haswa na uchumi
|
43 |
+
unaoteseka ndani na kitaifa.
|
44 |
+
- Kwa vyovyote vile, kama ningekuwa na nia ya kununua kitabu hicho, ningekuwa na
|
45 |
+
nafasi nzuri zaidi ya kujadili bei nzuri.
|
46 |
+
- source_sentence: Je, kweli wewe ni hivyo gullible, Dave Hanson?
|
47 |
+
sentences:
|
48 |
+
- Mwanamume amesimama katika mashua paddling kuelekea pwani lined na fanicha na
|
49 |
+
vitu vingine kubwa.
|
50 |
+
- Dave Hanson, je, unaamini kila kitu wanachosema?
|
51 |
+
- Wasichana watatu wakifanya mchezo wa kuigiza jukwaani.
|
52 |
+
- source_sentence: Wanandoa wakitembea pamoja.
|
53 |
+
sentences:
|
54 |
+
- Mwanamume aliyevalia koti la manjano anatembea kando ya gari la kubebea watu.
|
55 |
+
- Wenzi wa ndoa wazee wanatembea barabarani wakishikamana mikono.
|
56 |
+
- Msichana mdogo anapanda kwenye kifaa cha kamba.
|
57 |
+
- source_sentence: Kuna masuala ya sera.
|
58 |
+
sentences:
|
59 |
+
- Mwanamke mwenye makunyanzi sana akishikilia miwani yake na kutembea kwenye barabara
|
60 |
+
ya jiji.
|
61 |
+
- Mwanamume anayeigiza kwa ajili ya umati wa watu.
|
62 |
+
- Masuala ya sera ya mbinu nyingi na maombi.
|
63 |
+
pipeline_tag: sentence-similarity
|
64 |
+
model-index:
|
65 |
+
- name: BGE base Financial Matryoshka
|
66 |
+
results:
|
67 |
+
- task:
|
68 |
+
type: information-retrieval
|
69 |
+
name: Information Retrieval
|
70 |
+
dataset:
|
71 |
+
name: dim 768
|
72 |
+
type: dim_768
|
73 |
+
metrics:
|
74 |
+
- type: cosine_accuracy@1
|
75 |
+
value: 0.26803894120641386
|
76 |
+
name: Cosine Accuracy@1
|
77 |
+
- type: cosine_accuracy@3
|
78 |
+
value: 0.3499618223466531
|
79 |
+
name: Cosine Accuracy@3
|
80 |
+
- type: cosine_accuracy@5
|
81 |
+
value: 0.3858806312038687
|
82 |
+
name: Cosine Accuracy@5
|
83 |
+
- type: cosine_accuracy@10
|
84 |
+
value: 0.43318910664291166
|
85 |
+
name: Cosine Accuracy@10
|
86 |
+
- type: cosine_precision@1
|
87 |
+
value: 0.26803894120641386
|
88 |
+
name: Cosine Precision@1
|
89 |
+
- type: cosine_precision@3
|
90 |
+
value: 0.11665394078221768
|
91 |
+
name: Cosine Precision@3
|
92 |
+
- type: cosine_precision@5
|
93 |
+
value: 0.07717612624077373
|
94 |
+
name: Cosine Precision@5
|
95 |
+
- type: cosine_precision@10
|
96 |
+
value: 0.043318910664291166
|
97 |
+
name: Cosine Precision@10
|
98 |
+
- type: cosine_recall@1
|
99 |
+
value: 0.26803894120641386
|
100 |
+
name: Cosine Recall@1
|
101 |
+
- type: cosine_recall@3
|
102 |
+
value: 0.3499618223466531
|
103 |
+
name: Cosine Recall@3
|
104 |
+
- type: cosine_recall@5
|
105 |
+
value: 0.3858806312038687
|
106 |
+
name: Cosine Recall@5
|
107 |
+
- type: cosine_recall@10
|
108 |
+
value: 0.43318910664291166
|
109 |
+
name: Cosine Recall@10
|
110 |
+
- type: cosine_ndcg@10
|
111 |
+
value: 0.34611891078942064
|
112 |
+
name: Cosine Ndcg@10
|
113 |
+
- type: cosine_mrr@10
|
114 |
+
value: 0.3188061049905684
|
115 |
+
name: Cosine Mrr@10
|
116 |
+
- type: cosine_map@100
|
117 |
+
value: 0.3251959746415499
|
118 |
+
name: Cosine Map@100
|
119 |
+
- task:
|
120 |
+
type: information-retrieval
|
121 |
+
name: Information Retrieval
|
122 |
+
dataset:
|
123 |
+
name: dim 512
|
124 |
+
type: dim_512
|
125 |
+
metrics:
|
126 |
+
- type: cosine_accuracy@1
|
127 |
+
value: 0.26552557902774243
|
128 |
+
name: Cosine Accuracy@1
|
129 |
+
- type: cosine_accuracy@3
|
130 |
+
value: 0.34601679816747266
|
131 |
+
name: Cosine Accuracy@3
|
132 |
+
- type: cosine_accuracy@5
|
133 |
+
value: 0.3810766098243828
|
134 |
+
name: Cosine Accuracy@5
|
135 |
+
- type: cosine_accuracy@10
|
136 |
+
value: 0.4290850089081191
|
137 |
+
name: Cosine Accuracy@10
|
138 |
+
- type: cosine_precision@1
|
139 |
+
value: 0.26552557902774243
|
140 |
+
name: Cosine Precision@1
|
141 |
+
- type: cosine_precision@3
|
142 |
+
value: 0.11533893272249085
|
143 |
+
name: Cosine Precision@3
|
144 |
+
- type: cosine_precision@5
|
145 |
+
value: 0.07621532196487656
|
146 |
+
name: Cosine Precision@5
|
147 |
+
- type: cosine_precision@10
|
148 |
+
value: 0.04290850089081191
|
149 |
+
name: Cosine Precision@10
|
150 |
+
- type: cosine_recall@1
|
151 |
+
value: 0.26552557902774243
|
152 |
+
name: Cosine Recall@1
|
153 |
+
- type: cosine_recall@3
|
154 |
+
value: 0.34601679816747266
|
155 |
+
name: Cosine Recall@3
|
156 |
+
- type: cosine_recall@5
|
157 |
+
value: 0.3810766098243828
|
158 |
+
name: Cosine Recall@5
|
159 |
+
- type: cosine_recall@10
|
160 |
+
value: 0.4290850089081191
|
161 |
+
name: Cosine Recall@10
|
162 |
+
- type: cosine_ndcg@10
|
163 |
+
value: 0.3425120728009226
|
164 |
+
name: Cosine Ndcg@10
|
165 |
+
- type: cosine_mrr@10
|
166 |
+
value: 0.31538232445349546
|
167 |
+
name: Cosine Mrr@10
|
168 |
+
- type: cosine_map@100
|
169 |
+
value: 0.32174207802147353
|
170 |
+
name: Cosine Map@100
|
171 |
+
- task:
|
172 |
+
type: information-retrieval
|
173 |
+
name: Information Retrieval
|
174 |
+
dataset:
|
175 |
+
name: dim 256
|
176 |
+
type: dim_256
|
177 |
+
metrics:
|
178 |
+
- type: cosine_accuracy@1
|
179 |
+
value: 0.2576355306693815
|
180 |
+
name: Cosine Accuracy@1
|
181 |
+
- type: cosine_accuracy@3
|
182 |
+
value: 0.33790404683125475
|
183 |
+
name: Cosine Accuracy@3
|
184 |
+
- type: cosine_accuracy@5
|
185 |
+
value: 0.37165945533214556
|
186 |
+
name: Cosine Accuracy@5
|
187 |
+
- type: cosine_accuracy@10
|
188 |
+
value: 0.41950878086026977
|
189 |
+
name: Cosine Accuracy@10
|
190 |
+
- type: cosine_precision@1
|
191 |
+
value: 0.2576355306693815
|
192 |
+
name: Cosine Precision@1
|
193 |
+
- type: cosine_precision@3
|
194 |
+
value: 0.1126346822770849
|
195 |
+
name: Cosine Precision@3
|
196 |
+
- type: cosine_precision@5
|
197 |
+
value: 0.07433189106642912
|
198 |
+
name: Cosine Precision@5
|
199 |
+
- type: cosine_precision@10
|
200 |
+
value: 0.041950878086026974
|
201 |
+
name: Cosine Precision@10
|
202 |
+
- type: cosine_recall@1
|
203 |
+
value: 0.2576355306693815
|
204 |
+
name: Cosine Recall@1
|
205 |
+
- type: cosine_recall@3
|
206 |
+
value: 0.33790404683125475
|
207 |
+
name: Cosine Recall@3
|
208 |
+
- type: cosine_recall@5
|
209 |
+
value: 0.37165945533214556
|
210 |
+
name: Cosine Recall@5
|
211 |
+
- type: cosine_recall@10
|
212 |
+
value: 0.41950878086026977
|
213 |
+
name: Cosine Recall@10
|
214 |
+
- type: cosine_ndcg@10
|
215 |
+
value: 0.3338740008089949
|
216 |
+
name: Cosine Ndcg@10
|
217 |
+
- type: cosine_mrr@10
|
218 |
+
value: 0.30705069547968683
|
219 |
+
name: Cosine Mrr@10
|
220 |
+
- type: cosine_map@100
|
221 |
+
value: 0.3134101334652913
|
222 |
+
name: Cosine Map@100
|
223 |
+
- task:
|
224 |
+
type: information-retrieval
|
225 |
+
name: Information Retrieval
|
226 |
+
dataset:
|
227 |
+
name: dim 128
|
228 |
+
type: dim_128
|
229 |
+
metrics:
|
230 |
+
- type: cosine_accuracy@1
|
231 |
+
value: 0.24494146093153474
|
232 |
+
name: Cosine Accuracy@1
|
233 |
+
- type: cosine_accuracy@3
|
234 |
+
value: 0.3218694324255536
|
235 |
+
name: Cosine Accuracy@3
|
236 |
+
- type: cosine_accuracy@5
|
237 |
+
value: 0.3557202850598117
|
238 |
+
name: Cosine Accuracy@5
|
239 |
+
- type: cosine_accuracy@10
|
240 |
+
value: 0.402901501654365
|
241 |
+
name: Cosine Accuracy@10
|
242 |
+
- type: cosine_precision@1
|
243 |
+
value: 0.24494146093153474
|
244 |
+
name: Cosine Precision@1
|
245 |
+
- type: cosine_precision@3
|
246 |
+
value: 0.10728981080851785
|
247 |
+
name: Cosine Precision@3
|
248 |
+
- type: cosine_precision@5
|
249 |
+
value: 0.07114405701196233
|
250 |
+
name: Cosine Precision@5
|
251 |
+
- type: cosine_precision@10
|
252 |
+
value: 0.0402901501654365
|
253 |
+
name: Cosine Precision@10
|
254 |
+
- type: cosine_recall@1
|
255 |
+
value: 0.24494146093153474
|
256 |
+
name: Cosine Recall@1
|
257 |
+
- type: cosine_recall@3
|
258 |
+
value: 0.3218694324255536
|
259 |
+
name: Cosine Recall@3
|
260 |
+
- type: cosine_recall@5
|
261 |
+
value: 0.3557202850598117
|
262 |
+
name: Cosine Recall@5
|
263 |
+
- type: cosine_recall@10
|
264 |
+
value: 0.402901501654365
|
265 |
+
name: Cosine Recall@10
|
266 |
+
- type: cosine_ndcg@10
|
267 |
+
value: 0.3191027723891013
|
268 |
+
name: Cosine Ndcg@10
|
269 |
+
- type: cosine_mrr@10
|
270 |
+
value: 0.2928823673781056
|
271 |
+
name: Cosine Mrr@10
|
272 |
+
- type: cosine_map@100
|
273 |
+
value: 0.299205934269314
|
274 |
+
name: Cosine Map@100
|
275 |
+
- task:
|
276 |
+
type: information-retrieval
|
277 |
+
name: Information Retrieval
|
278 |
+
dataset:
|
279 |
+
name: dim 64
|
280 |
+
type: dim_64
|
281 |
+
metrics:
|
282 |
+
- type: cosine_accuracy@1
|
283 |
+
value: 0.21936243318910664
|
284 |
+
name: Cosine Accuracy@1
|
285 |
+
- type: cosine_accuracy@3
|
286 |
+
value: 0.2918045304148638
|
287 |
+
name: Cosine Accuracy@3
|
288 |
+
- type: cosine_accuracy@5
|
289 |
+
value: 0.3234601679816747
|
290 |
+
name: Cosine Accuracy@5
|
291 |
+
- type: cosine_accuracy@10
|
292 |
+
value: 0.3698778315092899
|
293 |
+
name: Cosine Accuracy@10
|
294 |
+
- type: cosine_precision@1
|
295 |
+
value: 0.21936243318910664
|
296 |
+
name: Cosine Precision@1
|
297 |
+
- type: cosine_precision@3
|
298 |
+
value: 0.0972681768049546
|
299 |
+
name: Cosine Precision@3
|
300 |
+
- type: cosine_precision@5
|
301 |
+
value: 0.06469203359633495
|
302 |
+
name: Cosine Precision@5
|
303 |
+
- type: cosine_precision@10
|
304 |
+
value: 0.03698778315092899
|
305 |
+
name: Cosine Precision@10
|
306 |
+
- type: cosine_recall@1
|
307 |
+
value: 0.21936243318910664
|
308 |
+
name: Cosine Recall@1
|
309 |
+
- type: cosine_recall@3
|
310 |
+
value: 0.2918045304148638
|
311 |
+
name: Cosine Recall@3
|
312 |
+
- type: cosine_recall@5
|
313 |
+
value: 0.3234601679816747
|
314 |
+
name: Cosine Recall@5
|
315 |
+
- type: cosine_recall@10
|
316 |
+
value: 0.3698778315092899
|
317 |
+
name: Cosine Recall@10
|
318 |
+
- type: cosine_ndcg@10
|
319 |
+
value: 0.2897472677253453
|
320 |
+
name: Cosine Ndcg@10
|
321 |
+
- type: cosine_mrr@10
|
322 |
+
value: 0.26472963050495346
|
323 |
+
name: Cosine Mrr@10
|
324 |
+
- type: cosine_map@100
|
325 |
+
value: 0.2710377326397304
|
326 |
+
name: Cosine Map@100
|
327 |
+
---
|
328 |
+
|
329 |
+
# BGE base Financial Matryoshka
|
330 |
+
|
331 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
332 |
+
|
333 |
+
## Model Details
|
334 |
+
|
335 |
+
### Model Description
|
336 |
+
- **Model Type:** Sentence Transformer
|
337 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
338 |
+
- **Maximum Sequence Length:** 512 tokens
|
339 |
+
- **Output Dimensionality:** 768 tokens
|
340 |
+
- **Similarity Function:** Cosine Similarity
|
341 |
+
<!-- - **Training Dataset:** Unknown -->
|
342 |
+
- **Language:** en
|
343 |
+
- **License:** apache-2.0
|
344 |
+
|
345 |
+
### Model Sources
|
346 |
+
|
347 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
348 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
349 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
350 |
+
|
351 |
+
### Full Model Architecture
|
352 |
+
|
353 |
+
```
|
354 |
+
SentenceTransformer(
|
355 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
356 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
357 |
+
(2): Normalize()
|
358 |
+
)
|
359 |
+
```
|
360 |
+
|
361 |
+
## Usage
|
362 |
+
|
363 |
+
### Direct Usage (Sentence Transformers)
|
364 |
+
|
365 |
+
First install the Sentence Transformers library:
|
366 |
+
|
367 |
+
```bash
|
368 |
+
pip install -U sentence-transformers
|
369 |
+
```
|
370 |
+
|
371 |
+
Then you can load this model and run inference.
|
372 |
+
```python
|
373 |
+
from sentence_transformers import SentenceTransformer
|
374 |
+
|
375 |
+
# Download from the 🤗 Hub
|
376 |
+
model = SentenceTransformer("sartifyllc/bge-base-swahili-matryoshka")
|
377 |
+
# Run inference
|
378 |
+
sentences = [
|
379 |
+
'Kuna masuala ya sera.',
|
380 |
+
'Masuala ya sera ya mbinu nyingi na maombi.',
|
381 |
+
'Mwanamke mwenye makunyanzi sana akishikilia miwani yake na kutembea kwenye barabara ya jiji.',
|
382 |
+
]
|
383 |
+
embeddings = model.encode(sentences)
|
384 |
+
print(embeddings.shape)
|
385 |
+
# [3, 768]
|
386 |
+
|
387 |
+
# Get the similarity scores for the embeddings
|
388 |
+
similarities = model.similarity(embeddings, embeddings)
|
389 |
+
print(similarities.shape)
|
390 |
+
# [3, 3]
|
391 |
+
```
|
392 |
+
|
393 |
+
<!--
|
394 |
+
### Direct Usage (Transformers)
|
395 |
+
|
396 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
397 |
+
|
398 |
+
</details>
|
399 |
+
-->
|
400 |
+
|
401 |
+
<!--
|
402 |
+
### Downstream Usage (Sentence Transformers)
|
403 |
+
|
404 |
+
You can finetune this model on your own dataset.
|
405 |
+
|
406 |
+
<details><summary>Click to expand</summary>
|
407 |
+
|
408 |
+
</details>
|
409 |
+
-->
|
410 |
+
|
411 |
+
<!--
|
412 |
+
### Out-of-Scope Use
|
413 |
+
|
414 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
415 |
+
-->
|
416 |
+
|
417 |
+
## Evaluation
|
418 |
+
|
419 |
+
### Metrics
|
420 |
+
|
421 |
+
#### Information Retrieval
|
422 |
+
* Dataset: `dim_768`
|
423 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
424 |
+
|
425 |
+
| Metric | Value |
|
426 |
+
|:--------------------|:-----------|
|
427 |
+
| cosine_accuracy@1 | 0.268 |
|
428 |
+
| cosine_accuracy@3 | 0.35 |
|
429 |
+
| cosine_accuracy@5 | 0.3859 |
|
430 |
+
| cosine_accuracy@10 | 0.4332 |
|
431 |
+
| cosine_precision@1 | 0.268 |
|
432 |
+
| cosine_precision@3 | 0.1167 |
|
433 |
+
| cosine_precision@5 | 0.0772 |
|
434 |
+
| cosine_precision@10 | 0.0433 |
|
435 |
+
| cosine_recall@1 | 0.268 |
|
436 |
+
| cosine_recall@3 | 0.35 |
|
437 |
+
| cosine_recall@5 | 0.3859 |
|
438 |
+
| cosine_recall@10 | 0.4332 |
|
439 |
+
| cosine_ndcg@10 | 0.3461 |
|
440 |
+
| cosine_mrr@10 | 0.3188 |
|
441 |
+
| **cosine_map@100** | **0.3252** |
|
442 |
+
|
443 |
+
#### Information Retrieval
|
444 |
+
* Dataset: `dim_512`
|
445 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
446 |
+
|
447 |
+
| Metric | Value |
|
448 |
+
|:--------------------|:-----------|
|
449 |
+
| cosine_accuracy@1 | 0.2655 |
|
450 |
+
| cosine_accuracy@3 | 0.346 |
|
451 |
+
| cosine_accuracy@5 | 0.3811 |
|
452 |
+
| cosine_accuracy@10 | 0.4291 |
|
453 |
+
| cosine_precision@1 | 0.2655 |
|
454 |
+
| cosine_precision@3 | 0.1153 |
|
455 |
+
| cosine_precision@5 | 0.0762 |
|
456 |
+
| cosine_precision@10 | 0.0429 |
|
457 |
+
| cosine_recall@1 | 0.2655 |
|
458 |
+
| cosine_recall@3 | 0.346 |
|
459 |
+
| cosine_recall@5 | 0.3811 |
|
460 |
+
| cosine_recall@10 | 0.4291 |
|
461 |
+
| cosine_ndcg@10 | 0.3425 |
|
462 |
+
| cosine_mrr@10 | 0.3154 |
|
463 |
+
| **cosine_map@100** | **0.3217** |
|
464 |
+
|
465 |
+
#### Information Retrieval
|
466 |
+
* Dataset: `dim_256`
|
467 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
468 |
+
|
469 |
+
| Metric | Value |
|
470 |
+
|:--------------------|:-----------|
|
471 |
+
| cosine_accuracy@1 | 0.2576 |
|
472 |
+
| cosine_accuracy@3 | 0.3379 |
|
473 |
+
| cosine_accuracy@5 | 0.3717 |
|
474 |
+
| cosine_accuracy@10 | 0.4195 |
|
475 |
+
| cosine_precision@1 | 0.2576 |
|
476 |
+
| cosine_precision@3 | 0.1126 |
|
477 |
+
| cosine_precision@5 | 0.0743 |
|
478 |
+
| cosine_precision@10 | 0.042 |
|
479 |
+
| cosine_recall@1 | 0.2576 |
|
480 |
+
| cosine_recall@3 | 0.3379 |
|
481 |
+
| cosine_recall@5 | 0.3717 |
|
482 |
+
| cosine_recall@10 | 0.4195 |
|
483 |
+
| cosine_ndcg@10 | 0.3339 |
|
484 |
+
| cosine_mrr@10 | 0.3071 |
|
485 |
+
| **cosine_map@100** | **0.3134** |
|
486 |
+
|
487 |
+
#### Information Retrieval
|
488 |
+
* Dataset: `dim_128`
|
489 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
490 |
+
|
491 |
+
| Metric | Value |
|
492 |
+
|:--------------------|:-----------|
|
493 |
+
| cosine_accuracy@1 | 0.2449 |
|
494 |
+
| cosine_accuracy@3 | 0.3219 |
|
495 |
+
| cosine_accuracy@5 | 0.3557 |
|
496 |
+
| cosine_accuracy@10 | 0.4029 |
|
497 |
+
| cosine_precision@1 | 0.2449 |
|
498 |
+
| cosine_precision@3 | 0.1073 |
|
499 |
+
| cosine_precision@5 | 0.0711 |
|
500 |
+
| cosine_precision@10 | 0.0403 |
|
501 |
+
| cosine_recall@1 | 0.2449 |
|
502 |
+
| cosine_recall@3 | 0.3219 |
|
503 |
+
| cosine_recall@5 | 0.3557 |
|
504 |
+
| cosine_recall@10 | 0.4029 |
|
505 |
+
| cosine_ndcg@10 | 0.3191 |
|
506 |
+
| cosine_mrr@10 | 0.2929 |
|
507 |
+
| **cosine_map@100** | **0.2992** |
|
508 |
+
|
509 |
+
#### Information Retrieval
|
510 |
+
* Dataset: `dim_64`
|
511 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
512 |
+
|
513 |
+
| Metric | Value |
|
514 |
+
|:--------------------|:----------|
|
515 |
+
| cosine_accuracy@1 | 0.2194 |
|
516 |
+
| cosine_accuracy@3 | 0.2918 |
|
517 |
+
| cosine_accuracy@5 | 0.3235 |
|
518 |
+
| cosine_accuracy@10 | 0.3699 |
|
519 |
+
| cosine_precision@1 | 0.2194 |
|
520 |
+
| cosine_precision@3 | 0.0973 |
|
521 |
+
| cosine_precision@5 | 0.0647 |
|
522 |
+
| cosine_precision@10 | 0.037 |
|
523 |
+
| cosine_recall@1 | 0.2194 |
|
524 |
+
| cosine_recall@3 | 0.2918 |
|
525 |
+
| cosine_recall@5 | 0.3235 |
|
526 |
+
| cosine_recall@10 | 0.3699 |
|
527 |
+
| cosine_ndcg@10 | 0.2897 |
|
528 |
+
| cosine_mrr@10 | 0.2647 |
|
529 |
+
| **cosine_map@100** | **0.271** |
|
530 |
+
|
531 |
+
<!--
|
532 |
+
## Bias, Risks and Limitations
|
533 |
+
|
534 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
### Recommendations
|
539 |
+
|
540 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
541 |
+
-->
|
542 |
+
|
543 |
+
## Training Details
|
544 |
+
|
545 |
+
### Training Dataset
|
546 |
+
|
547 |
+
#### Unnamed Dataset
|
548 |
+
|
549 |
+
|
550 |
+
* Size: 282,883 training samples
|
551 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
552 |
+
* Approximate statistics based on the first 1000 samples:
|
553 |
+
| | positive | anchor |
|
554 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
555 |
+
| type | string | string |
|
556 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 20.1 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 38.64 tokens</li><li>max: 184 tokens</li></ul> |
|
557 |
+
* Samples:
|
558 |
+
| positive | anchor |
|
559 |
+
|:----------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
560 |
+
| <code>Alingoja mtu huyo mwingine arudi.</code> | <code>Ca'daan alingoja hadi alasiri yote mtu huyo atoke tena.</code> |
|
561 |
+
| <code>Sheria hiyo huanzisha mfululizo wa ukaguzi wa majaribio.</code> | <code>Sheria hiyo pia inatoa sheria ya kudhibiti kwa ajili ya mashirika fulani ambayo yanahitaji kuandaa taarifa za kifedha za mashirika yote na kuzisimamisha kwa wakaguzi wa jumla.</code> |
|
562 |
+
| <code>Mbwa anakimbia na kuruka nje.</code> | <code>Mbwa mwenye rangi ya kahawia anaruka na kukimbia shambani.</code> |
|
563 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
564 |
+
```json
|
565 |
+
{
|
566 |
+
"loss": "MultipleNegativesRankingLoss",
|
567 |
+
"matryoshka_dims": [
|
568 |
+
768,
|
569 |
+
512,
|
570 |
+
256,
|
571 |
+
128,
|
572 |
+
64
|
573 |
+
],
|
574 |
+
"matryoshka_weights": [
|
575 |
+
1,
|
576 |
+
1,
|
577 |
+
1,
|
578 |
+
1,
|
579 |
+
1
|
580 |
+
],
|
581 |
+
"n_dims_per_step": -1
|
582 |
+
}
|
583 |
+
```
|
584 |
+
|
585 |
+
### Training Hyperparameters
|
586 |
+
#### Non-Default Hyperparameters
|
587 |
+
|
588 |
+
- `eval_strategy`: epoch
|
589 |
+
- `per_device_train_batch_size`: 32
|
590 |
+
- `per_device_eval_batch_size`: 16
|
591 |
+
- `gradient_accumulation_steps`: 16
|
592 |
+
- `learning_rate`: 2e-05
|
593 |
+
- `num_train_epochs`: 4
|
594 |
+
- `lr_scheduler_type`: cosine
|
595 |
+
- `warmup_ratio`: 0.1
|
596 |
+
- `bf16`: True
|
597 |
+
- `tf32`: True
|
598 |
+
- `load_best_model_at_end`: True
|
599 |
+
- `optim`: adamw_torch_fused
|
600 |
+
- `batch_sampler`: no_duplicates
|
601 |
+
|
602 |
+
#### All Hyperparameters
|
603 |
+
<details><summary>Click to expand</summary>
|
604 |
+
|
605 |
+
- `overwrite_output_dir`: False
|
606 |
+
- `do_predict`: False
|
607 |
+
- `eval_strategy`: epoch
|
608 |
+
- `prediction_loss_only`: True
|
609 |
+
- `per_device_train_batch_size`: 32
|
610 |
+
- `per_device_eval_batch_size`: 16
|
611 |
+
- `per_gpu_train_batch_size`: None
|
612 |
+
- `per_gpu_eval_batch_size`: None
|
613 |
+
- `gradient_accumulation_steps`: 16
|
614 |
+
- `eval_accumulation_steps`: None
|
615 |
+
- `learning_rate`: 2e-05
|
616 |
+
- `weight_decay`: 0.0
|
617 |
+
- `adam_beta1`: 0.9
|
618 |
+
- `adam_beta2`: 0.999
|
619 |
+
- `adam_epsilon`: 1e-08
|
620 |
+
- `max_grad_norm`: 1.0
|
621 |
+
- `num_train_epochs`: 4
|
622 |
+
- `max_steps`: -1
|
623 |
+
- `lr_scheduler_type`: cosine
|
624 |
+
- `lr_scheduler_kwargs`: {}
|
625 |
+
- `warmup_ratio`: 0.1
|
626 |
+
- `warmup_steps`: 0
|
627 |
+
- `log_level`: passive
|
628 |
+
- `log_level_replica`: warning
|
629 |
+
- `log_on_each_node`: True
|
630 |
+
- `logging_nan_inf_filter`: True
|
631 |
+
- `save_safetensors`: True
|
632 |
+
- `save_on_each_node`: False
|
633 |
+
- `save_only_model`: False
|
634 |
+
- `restore_callback_states_from_checkpoint`: False
|
635 |
+
- `no_cuda`: False
|
636 |
+
- `use_cpu`: False
|
637 |
+
- `use_mps_device`: False
|
638 |
+
- `seed`: 42
|
639 |
+
- `data_seed`: None
|
640 |
+
- `jit_mode_eval`: False
|
641 |
+
- `use_ipex`: False
|
642 |
+
- `bf16`: True
|
643 |
+
- `fp16`: False
|
644 |
+
- `fp16_opt_level`: O1
|
645 |
+
- `half_precision_backend`: auto
|
646 |
+
- `bf16_full_eval`: False
|
647 |
+
- `fp16_full_eval`: False
|
648 |
+
- `tf32`: True
|
649 |
+
- `local_rank`: 0
|
650 |
+
- `ddp_backend`: None
|
651 |
+
- `tpu_num_cores`: None
|
652 |
+
- `tpu_metrics_debug`: False
|
653 |
+
- `debug`: []
|
654 |
+
- `dataloader_drop_last`: False
|
655 |
+
- `dataloader_num_workers`: 0
|
656 |
+
- `dataloader_prefetch_factor`: None
|
657 |
+
- `past_index`: -1
|
658 |
+
- `disable_tqdm`: False
|
659 |
+
- `remove_unused_columns`: True
|
660 |
+
- `label_names`: None
|
661 |
+
- `load_best_model_at_end`: True
|
662 |
+
- `ignore_data_skip`: False
|
663 |
+
- `fsdp`: []
|
664 |
+
- `fsdp_min_num_params`: 0
|
665 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
666 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
667 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
668 |
+
- `deepspeed`: None
|
669 |
+
- `label_smoothing_factor`: 0.0
|
670 |
+
- `optim`: adamw_torch_fused
|
671 |
+
- `optim_args`: None
|
672 |
+
- `adafactor`: False
|
673 |
+
- `group_by_length`: False
|
674 |
+
- `length_column_name`: length
|
675 |
+
- `ddp_find_unused_parameters`: None
|
676 |
+
- `ddp_bucket_cap_mb`: None
|
677 |
+
- `ddp_broadcast_buffers`: False
|
678 |
+
- `dataloader_pin_memory`: True
|
679 |
+
- `dataloader_persistent_workers`: False
|
680 |
+
- `skip_memory_metrics`: True
|
681 |
+
- `use_legacy_prediction_loop`: False
|
682 |
+
- `push_to_hub`: False
|
683 |
+
- `resume_from_checkpoint`: None
|
684 |
+
- `hub_model_id`: None
|
685 |
+
- `hub_strategy`: every_save
|
686 |
+
- `hub_private_repo`: False
|
687 |
+
- `hub_always_push`: False
|
688 |
+
- `gradient_checkpointing`: False
|
689 |
+
- `gradient_checkpointing_kwargs`: None
|
690 |
+
- `include_inputs_for_metrics`: False
|
691 |
+
- `eval_do_concat_batches`: True
|
692 |
+
- `fp16_backend`: auto
|
693 |
+
- `push_to_hub_model_id`: None
|
694 |
+
- `push_to_hub_organization`: None
|
695 |
+
- `mp_parameters`:
|
696 |
+
- `auto_find_batch_size`: False
|
697 |
+
- `full_determinism`: False
|
698 |
+
- `torchdynamo`: None
|
699 |
+
- `ray_scope`: last
|
700 |
+
- `ddp_timeout`: 1800
|
701 |
+
- `torch_compile`: False
|
702 |
+
- `torch_compile_backend`: None
|
703 |
+
- `torch_compile_mode`: None
|
704 |
+
- `dispatch_batches`: None
|
705 |
+
- `split_batches`: None
|
706 |
+
- `include_tokens_per_second`: False
|
707 |
+
- `include_num_input_tokens_seen`: False
|
708 |
+
- `neftune_noise_alpha`: None
|
709 |
+
- `optim_target_modules`: None
|
710 |
+
- `batch_eval_metrics`: False
|
711 |
+
- `batch_sampler`: no_duplicates
|
712 |
+
- `multi_dataset_batch_sampler`: proportional
|
713 |
+
|
714 |
+
</details>
|
715 |
+
|
716 |
+
### Training Logs
|
717 |
+
<details><summary>Click to expand</summary>
|
718 |
+
|
719 |
+
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
720 |
+
|:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
721 |
+
| 0.0181 | 10 | 9.7089 | - | - | - | - | - |
|
722 |
+
| 0.0362 | 20 | 9.2806 | - | - | - | - | - |
|
723 |
+
| 0.0543 | 30 | 8.8905 | - | - | - | - | - |
|
724 |
+
| 0.0724 | 40 | 7.9651 | - | - | - | - | - |
|
725 |
+
| 0.0905 | 50 | 7.4201 | - | - | - | - | - |
|
726 |
+
| 0.1086 | 60 | 6.8346 | - | - | - | - | - |
|
727 |
+
| 0.1267 | 70 | 6.515 | - | - | - | - | - |
|
728 |
+
| 0.1448 | 80 | 6.2009 | - | - | - | - | - |
|
729 |
+
| 0.1629 | 90 | 5.8256 | - | - | - | - | - |
|
730 |
+
| 0.1810 | 100 | 5.549 | - | - | - | - | - |
|
731 |
+
| 0.1991 | 110 | 5.1667 | - | - | - | - | - |
|
732 |
+
| 0.2172 | 120 | 5.2684 | - | - | - | - | - |
|
733 |
+
| 0.2353 | 130 | 5.0678 | - | - | - | - | - |
|
734 |
+
| 0.2534 | 140 | 4.9183 | - | - | - | - | - |
|
735 |
+
| 0.2715 | 150 | 4.844 | - | - | - | - | - |
|
736 |
+
| 0.2896 | 160 | 4.5427 | - | - | - | - | - |
|
737 |
+
| 0.3077 | 170 | 4.3324 | - | - | - | - | - |
|
738 |
+
| 0.3258 | 180 | 4.4963 | - | - | - | - | - |
|
739 |
+
| 0.3439 | 190 | 4.1704 | - | - | - | - | - |
|
740 |
+
| 0.3620 | 200 | 4.1285 | - | - | - | - | - |
|
741 |
+
| 0.3800 | 210 | 4.0235 | - | - | - | - | - |
|
742 |
+
| 0.3981 | 220 | 4.0738 | - | - | - | - | - |
|
743 |
+
| 0.4162 | 230 | 3.9132 | - | - | - | - | - |
|
744 |
+
| 0.4343 | 240 | 3.9682 | - | - | - | - | - |
|
745 |
+
| 0.4524 | 250 | 3.7542 | - | - | - | - | - |
|
746 |
+
| 0.4705 | 260 | 3.6508 | - | - | - | - | - |
|
747 |
+
| 0.4886 | 270 | 3.7596 | - | - | - | - | - |
|
748 |
+
| 0.5067 | 280 | 3.5596 | - | - | - | - | - |
|
749 |
+
| 0.5248 | 290 | 3.5077 | - | - | - | - | - |
|
750 |
+
| 0.5429 | 300 | 3.3831 | - | - | - | - | - |
|
751 |
+
| 0.5610 | 310 | 3.4 | - | - | - | - | - |
|
752 |
+
| 0.5791 | 320 | 3.296 | - | - | - | - | - |
|
753 |
+
| 0.5972 | 330 | 3.3646 | - | - | - | - | - |
|
754 |
+
| 0.6153 | 340 | 3.3533 | - | - | - | - | - |
|
755 |
+
| 0.6334 | 350 | 3.2171 | - | - | - | - | - |
|
756 |
+
| 0.6515 | 360 | 3.2324 | - | - | - | - | - |
|
757 |
+
| 0.6696 | 370 | 3.1544 | - | - | - | - | - |
|
758 |
+
| 0.6877 | 380 | 3.3393 | - | - | - | - | - |
|
759 |
+
| 0.7058 | 390 | 3.0864 | - | - | - | - | - |
|
760 |
+
| 0.7239 | 400 | 3.1069 | - | - | - | - | - |
|
761 |
+
| 0.7420 | 410 | 3.0722 | - | - | - | - | - |
|
762 |
+
| 0.7601 | 420 | 3.1446 | - | - | - | - | - |
|
763 |
+
| 0.7782 | 430 | 3.0847 | - | - | - | - | - |
|
764 |
+
| 0.7963 | 440 | 3.0331 | - | - | - | - | - |
|
765 |
+
| 0.8144 | 450 | 3.0197 | - | - | - | - | - |
|
766 |
+
| 0.8325 | 460 | 2.9667 | - | - | - | - | - |
|
767 |
+
| 0.8506 | 470 | 2.8331 | - | - | - | - | - |
|
768 |
+
| 0.8687 | 480 | 2.9333 | - | - | - | - | - |
|
769 |
+
| 0.8868 | 490 | 2.8714 | - | - | - | - | - |
|
770 |
+
| 0.9049 | 500 | 2.8578 | - | - | - | - | - |
|
771 |
+
| 0.9230 | 510 | 2.9689 | - | - | - | - | - |
|
772 |
+
| 0.9411 | 520 | 2.7977 | - | - | - | - | - |
|
773 |
+
| 0.9592 | 530 | 2.9832 | - | - | - | - | - |
|
774 |
+
| 0.9773 | 540 | 2.9761 | - | - | - | - | - |
|
775 |
+
| 0.9954 | 550 | 2.7711 | - | - | - | - | - |
|
776 |
+
| 0.9990 | 552 | - | 0.2772 | 0.2954 | 0.3052 | 0.2445 | 0.3080 |
|
777 |
+
| 1.0135 | 560 | 2.7194 | - | - | - | - | - |
|
778 |
+
| 1.0316 | 570 | 2.8489 | - | - | - | - | - |
|
779 |
+
| 1.0497 | 580 | 2.6559 | - | - | - | - | - |
|
780 |
+
| 1.0678 | 590 | 2.6239 | - | - | - | - | - |
|
781 |
+
| 1.0859 | 600 | 2.7081 | - | - | - | - | - |
|
782 |
+
| 1.1039 | 610 | 2.6581 | - | - | - | - | - |
|
783 |
+
| 1.1220 | 620 | 2.7709 | - | - | - | - | - |
|
784 |
+
| 1.1401 | 630 | 2.6191 | - | - | - | - | - |
|
785 |
+
| 1.1582 | 640 | 2.6712 | - | - | - | - | - |
|
786 |
+
| 1.1763 | 650 | 2.5445 | - | - | - | - | - |
|
787 |
+
| 1.1944 | 660 | 2.5264 | - | - | - | - | - |
|
788 |
+
| 1.2125 | 670 | 2.5782 | - | - | - | - | - |
|
789 |
+
| 1.2306 | 680 | 2.5652 | - | - | - | - | - |
|
790 |
+
| 1.2487 | 690 | 2.6229 | - | - | - | - | - |
|
791 |
+
| 1.2668 | 700 | 2.5557 | - | - | - | - | - |
|
792 |
+
| 1.2849 | 710 | 2.5251 | - | - | - | - | - |
|
793 |
+
| 1.3030 | 720 | 2.4555 | - | - | - | - | - |
|
794 |
+
| 1.3211 | 730 | 2.5335 | - | - | - | - | - |
|
795 |
+
| 1.3392 | 740 | 2.5027 | - | - | - | - | - |
|
796 |
+
| 1.3573 | 750 | 2.3569 | - | - | - | - | - |
|
797 |
+
| 1.3754 | 760 | 2.4255 | - | - | - | - | - |
|
798 |
+
| 1.3935 | 770 | 2.4626 | - | - | - | - | - |
|
799 |
+
| 1.4116 | 780 | 2.363 | - | - | - | - | - |
|
800 |
+
| 1.4297 | 790 | 2.4 | - | - | - | - | - |
|
801 |
+
| 1.4478 | 800 | 2.3317 | - | - | - | - | - |
|
802 |
+
| 1.4659 | 810 | 2.2922 | - | - | - | - | - |
|
803 |
+
| 1.4840 | 820 | 2.4086 | - | - | - | - | - |
|
804 |
+
| 1.5021 | 830 | 2.3166 | - | - | - | - | - |
|
805 |
+
| 1.5202 | 840 | 2.3401 | - | - | - | - | - |
|
806 |
+
| 1.5383 | 850 | 2.1951 | - | - | - | - | - |
|
807 |
+
| 1.5564 | 860 | 2.214 | - | - | - | - | - |
|
808 |
+
| 1.5745 | 870 | 2.1859 | - | - | - | - | - |
|
809 |
+
| 1.5926 | 880 | 2.3605 | - | - | - | - | - |
|
810 |
+
| 1.6107 | 890 | 2.2528 | - | - | - | - | - |
|
811 |
+
| 1.6288 | 900 | 2.2759 | - | - | - | - | - |
|
812 |
+
| 1.6469 | 910 | 2.1458 | - | - | - | - | - |
|
813 |
+
| 1.6650 | 920 | 2.187 | - | - | - | - | - |
|
814 |
+
| 1.6831 | 930 | 2.3406 | - | - | - | - | - |
|
815 |
+
| 1.7012 | 940 | 2.2151 | - | - | - | - | - |
|
816 |
+
| 1.7193 | 950 | 2.2971 | - | - | - | - | - |
|
817 |
+
| 1.7374 | 960 | 2.2736 | - | - | - | - | - |
|
818 |
+
| 1.7555 | 970 | 2.2329 | - | - | - | - | - |
|
819 |
+
| 1.7736 | 980 | 2.2602 | - | - | - | - | - |
|
820 |
+
| 1.7917 | 990 | 2.2402 | - | - | - | - | - |
|
821 |
+
| 1.8098 | 1000 | 2.1971 | - | - | - | - | - |
|
822 |
+
| 1.8278 | 1010 | 2.1642 | - | - | - | - | - |
|
823 |
+
| 1.8459 | 1020 | 2.1274 | - | - | - | - | - |
|
824 |
+
| 1.8640 | 1030 | 2.1833 | - | - | - | - | - |
|
825 |
+
| 1.8821 | 1040 | 2.156 | - | - | - | - | - |
|
826 |
+
| 1.9002 | 1050 | 2.1252 | - | - | - | - | - |
|
827 |
+
| 1.9183 | 1060 | 2.161 | - | - | - | - | - |
|
828 |
+
| 1.9364 | 1070 | 2.1267 | - | - | - | - | - |
|
829 |
+
| 1.9545 | 1080 | 2.2017 | - | - | - | - | - |
|
830 |
+
| 1.9726 | 1090 | 2.3044 | - | - | - | - | - |
|
831 |
+
| 1.9907 | 1100 | 2.161 | - | - | - | - | - |
|
832 |
+
| 1.9998 | 1105 | - | 0.2928 | 0.3085 | 0.3165 | 0.2632 | 0.3204 |
|
833 |
+
| 2.0088 | 1110 | 2.0594 | - | - | - | - | - |
|
834 |
+
| 2.0269 | 1120 | 2.2277 | - | - | - | - | - |
|
835 |
+
| 2.0450 | 1130 | 2.1591 | - | - | - | - | - |
|
836 |
+
| 2.0631 | 1140 | 2.0396 | - | - | - | - | - |
|
837 |
+
| 2.0812 | 1150 | 2.1007 | - | - | - | - | - |
|
838 |
+
| 2.0993 | 1160 | 2.0705 | - | - | - | - | - |
|
839 |
+
| 2.1174 | 1170 | 2.0894 | - | - | - | - | - |
|
840 |
+
| 2.1355 | 1180 | 2.0677 | - | - | - | - | - |
|
841 |
+
| 2.1536 | 1190 | 2.0893 | - | - | - | - | - |
|
842 |
+
| 2.1717 | 1200 | 1.984 | - | - | - | - | - |
|
843 |
+
| 2.1898 | 1210 | 1.9206 | - | - | - | - | - |
|
844 |
+
| 2.2079 | 1220 | 2.132 | - | - | - | - | - |
|
845 |
+
| 2.2260 | 1230 | 2.0457 | - | - | - | - | - |
|
846 |
+
| 2.2441 | 1240 | 2.1428 | - | - | - | - | - |
|
847 |
+
| 2.2622 | 1250 | 2.1116 | - | - | - | - | - |
|
848 |
+
| 2.2803 | 1260 | 1.993 | - | - | - | - | - |
|
849 |
+
| 2.2984 | 1270 | 2.0181 | - | - | - | - | - |
|
850 |
+
| 2.3165 | 1280 | 1.9742 | - | - | - | - | - |
|
851 |
+
| 2.3346 | 1290 | 2.081 | - | - | - | - | - |
|
852 |
+
| 2.3527 | 1300 | 1.9107 | - | - | - | - | - |
|
853 |
+
| 2.3708 | 1310 | 1.9507 | - | - | - | - | - |
|
854 |
+
| 2.3889 | 1320 | 1.9844 | - | - | - | - | - |
|
855 |
+
| 2.4070 | 1330 | 2.0035 | - | - | - | - | - |
|
856 |
+
| 2.4251 | 1340 | 1.9121 | - | - | - | - | - |
|
857 |
+
| 2.4432 | 1350 | 2.0057 | - | - | - | - | - |
|
858 |
+
| 2.4613 | 1360 | 1.9323 | - | - | - | - | - |
|
859 |
+
| 2.4794 | 1370 | 1.9216 | - | - | - | - | - |
|
860 |
+
| 2.4975 | 1380 | 1.995 | - | - | - | - | - |
|
861 |
+
| 2.5156 | 1390 | 1.9285 | - | - | - | - | - |
|
862 |
+
| 2.5337 | 1400 | 1.8886 | - | - | - | - | - |
|
863 |
+
| 2.5517 | 1410 | 1.8298 | - | - | - | - | - |
|
864 |
+
| 2.5698 | 1420 | 1.8452 | - | - | - | - | - |
|
865 |
+
| 2.5879 | 1430 | 1.9488 | - | - | - | - | - |
|
866 |
+
| 2.6060 | 1440 | 1.8928 | - | - | - | - | - |
|
867 |
+
| 2.6241 | 1450 | 2.0101 | - | - | - | - | - |
|
868 |
+
| 2.6422 | 1460 | 1.7591 | - | - | - | - | - |
|
869 |
+
| 2.6603 | 1470 | 1.9177 | - | - | - | - | - |
|
870 |
+
| 2.6784 | 1480 | 1.9329 | - | - | - | - | - |
|
871 |
+
| 2.6965 | 1490 | 1.8978 | - | - | - | - | - |
|
872 |
+
| 2.7146 | 1500 | 1.9589 | - | - | - | - | - |
|
873 |
+
| 2.7327 | 1510 | 1.9744 | - | - | - | - | - |
|
874 |
+
| 2.7508 | 1520 | 1.9272 | - | - | - | - | - |
|
875 |
+
| 2.7689 | 1530 | 1.9234 | - | - | - | - | - |
|
876 |
+
| 2.7870 | 1540 | 1.9667 | - | - | - | - | - |
|
877 |
+
| 2.8051 | 1550 | 1.853 | - | - | - | - | - |
|
878 |
+
| 2.8232 | 1560 | 1.9191 | - | - | - | - | - |
|
879 |
+
| 2.8413 | 1570 | 1.8083 | - | - | - | - | - |
|
880 |
+
| 2.8594 | 1580 | 1.8543 | - | - | - | - | - |
|
881 |
+
| 2.8775 | 1590 | 1.9091 | - | - | - | - | - |
|
882 |
+
| 2.8956 | 1600 | 1.8079 | - | - | - | - | - |
|
883 |
+
| 2.9137 | 1610 | 1.8992 | - | - | - | - | - |
|
884 |
+
| 2.9318 | 1620 | 1.8742 | - | - | - | - | - |
|
885 |
+
| 2.9499 | 1630 | 1.9313 | - | - | - | - | - |
|
886 |
+
| 2.9680 | 1640 | 1.9832 | - | - | - | - | - |
|
887 |
+
| 2.9861 | 1650 | 1.9037 | - | - | - | - | - |
|
888 |
+
| 2.9988 | 1657 | - | 0.2982 | 0.3130 | 0.3211 | 0.2697 | 0.3247 |
|
889 |
+
| 3.0042 | 1660 | 1.7924 | - | - | - | - | - |
|
890 |
+
| 3.0223 | 1670 | 1.9677 | - | - | - | - | - |
|
891 |
+
| 3.0404 | 1680 | 1.9123 | - | - | - | - | - |
|
892 |
+
| 3.0585 | 1690 | 1.7691 | - | - | - | - | - |
|
893 |
+
| 3.0766 | 1700 | 1.8822 | - | - | - | - | - |
|
894 |
+
| 3.0947 | 1710 | 1.8543 | - | - | - | - | - |
|
895 |
+
| 3.1128 | 1720 | 1.8127 | - | - | - | - | - |
|
896 |
+
| 3.1309 | 1730 | 1.8844 | - | - | - | - | - |
|
897 |
+
| 3.1490 | 1740 | 1.911 | - | - | - | - | - |
|
898 |
+
| 3.1671 | 1750 | 1.7695 | - | - | - | - | - |
|
899 |
+
| 3.1852 | 1760 | 1.8134 | - | - | - | - | - |
|
900 |
+
| 3.2033 | 1770 | 1.7794 | - | - | - | - | - |
|
901 |
+
| 3.2214 | 1780 | 1.8851 | - | - | - | - | - |
|
902 |
+
| 3.2395 | 1790 | 1.8381 | - | - | - | - | - |
|
903 |
+
| 3.2576 | 1800 | 1.9184 | - | - | - | - | - |
|
904 |
+
| 3.2756 | 1810 | 1.8074 | - | - | - | - | - |
|
905 |
+
| 3.2937 | 1820 | 1.8236 | - | - | - | - | - |
|
906 |
+
| 3.3118 | 1830 | 1.8203 | - | - | - | - | - |
|
907 |
+
| 3.3299 | 1840 | 1.8874 | - | - | - | - | - |
|
908 |
+
| 3.3480 | 1850 | 1.7457 | - | - | - | - | - |
|
909 |
+
| 3.3661 | 1860 | 1.7933 | - | - | - | - | - |
|
910 |
+
| 3.3842 | 1870 | 1.759 | - | - | - | - | - |
|
911 |
+
| 3.4023 | 1880 | 1.8514 | - | - | - | - | - |
|
912 |
+
| 3.4204 | 1890 | 1.8163 | - | - | - | - | - |
|
913 |
+
| 3.4385 | 1900 | 1.8299 | - | - | - | - | - |
|
914 |
+
| 3.4566 | 1910 | 1.8112 | - | - | - | - | - |
|
915 |
+
| 3.4747 | 1920 | 1.7446 | - | - | - | - | - |
|
916 |
+
| 3.4928 | 1930 | 1.8314 | - | - | - | - | - |
|
917 |
+
| 3.5109 | 1940 | 1.742 | - | - | - | - | - |
|
918 |
+
| 3.5290 | 1950 | 1.7519 | - | - | - | - | - |
|
919 |
+
| 3.5471 | 1960 | 1.722 | - | - | - | - | - |
|
920 |
+
| 3.5652 | 1970 | 1.7454 | - | - | - | - | - |
|
921 |
+
| 3.5833 | 1980 | 1.7875 | - | - | - | - | - |
|
922 |
+
| 3.6014 | 1990 | 1.7596 | - | - | - | - | - |
|
923 |
+
| 3.6195 | 2000 | 1.8348 | - | - | - | - | - |
|
924 |
+
| 3.6376 | 2010 | 1.6954 | - | - | - | - | - |
|
925 |
+
| 3.6557 | 2020 | 1.7334 | - | - | - | - | - |
|
926 |
+
| 3.6738 | 2030 | 1.8318 | - | - | - | - | - |
|
927 |
+
| 3.6919 | 2040 | 1.7982 | - | - | - | - | - |
|
928 |
+
| 3.7100 | 2050 | 1.7987 | - | - | - | - | - |
|
929 |
+
| 3.7281 | 2060 | 1.8402 | - | - | - | - | - |
|
930 |
+
| 3.7462 | 2070 | 1.8569 | - | - | - | - | - |
|
931 |
+
| 3.7643 | 2080 | 1.8285 | - | - | - | - | - |
|
932 |
+
| 3.7824 | 2090 | 1.8652 | - | - | - | - | - |
|
933 |
+
| 3.8005 | 2100 | 1.7731 | - | - | - | - | - |
|
934 |
+
| 3.8186 | 2110 | 1.8697 | - | - | - | - | - |
|
935 |
+
| 3.8367 | 2120 | 1.6953 | - | - | - | - | - |
|
936 |
+
| 3.8548 | 2130 | 1.7493 | - | - | - | - | - |
|
937 |
+
| 3.8729 | 2140 | 1.8031 | - | - | - | - | - |
|
938 |
+
| 3.8910 | 2150 | 1.7053 | - | - | - | - | - |
|
939 |
+
| 3.9091 | 2160 | 1.8436 | - | - | - | - | - |
|
940 |
+
| 3.9272 | 2170 | 1.7572 | - | - | - | - | - |
|
941 |
+
| 3.9453 | 2180 | 1.7797 | - | - | - | - | - |
|
942 |
+
| 3.9634 | 2190 | 1.8827 | - | - | - | - | - |
|
943 |
+
| 3.9815 | 2200 | 1.8678 | - | - | - | - | - |
|
944 |
+
| **3.9959** | **2208** | **-** | **0.2992** | **0.3134** | **0.3217** | **0.271** | **0.3252** |
|
945 |
+
|
946 |
+
* The bold row denotes the saved checkpoint.
|
947 |
+
</details>
|
948 |
+
|
949 |
+
### Framework Versions
|
950 |
+
- Python: 3.10.12
|
951 |
+
- Sentence Transformers: 3.0.1
|
952 |
+
- Transformers: 4.41.2
|
953 |
+
- PyTorch: 2.1.2+cu121
|
954 |
+
- Accelerate: 0.31.0
|
955 |
+
- Datasets: 2.19.1
|
956 |
+
- Tokenizers: 0.19.1
|
957 |
+
|
958 |
+
## Citation
|
959 |
+
|
960 |
+
### BibTeX
|
961 |
+
|
962 |
+
#### Sentence Transformers
|
963 |
+
```bibtex
|
964 |
+
@inproceedings{reimers-2019-sentence-bert,
|
965 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
966 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
967 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
968 |
+
month = "11",
|
969 |
+
year = "2019",
|
970 |
+
publisher = "Association for Computational Linguistics",
|
971 |
+
url = "https://arxiv.org/abs/1908.10084",
|
972 |
+
}
|
973 |
+
```
|
974 |
+
|
975 |
+
#### MatryoshkaLoss
|
976 |
+
```bibtex
|
977 |
+
@misc{kusupati2024matryoshka,
|
978 |
+
title={Matryoshka Representation Learning},
|
979 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
980 |
+
year={2024},
|
981 |
+
eprint={2205.13147},
|
982 |
+
archivePrefix={arXiv},
|
983 |
+
primaryClass={cs.LG}
|
984 |
+
}
|
985 |
+
```
|
986 |
+
|
987 |
+
#### MultipleNegativesRankingLoss
|
988 |
+
```bibtex
|
989 |
+
@misc{henderson2017efficient,
|
990 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
991 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
992 |
+
year={2017},
|
993 |
+
eprint={1705.00652},
|
994 |
+
archivePrefix={arXiv},
|
995 |
+
primaryClass={cs.CL}
|
996 |
+
}
|
997 |
+
```
|
998 |
+
|
999 |
+
<!--
|
1000 |
+
## Glossary
|
1001 |
+
|
1002 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1003 |
+
-->
|
1004 |
+
|
1005 |
+
<!--
|
1006 |
+
## Model Card Authors
|
1007 |
+
|
1008 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1009 |
+
-->
|
1010 |
+
|
1011 |
+
<!--
|
1012 |
+
## Model Card Contact
|
1013 |
+
|
1014 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1015 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3800ab347872a796d31dc76526b2613b32e623fa612613d196e69ae08009d927
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|