sauc-abadal-lloret commited on
Commit
0a91a4f
1 Parent(s): 2de6802

End of training

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: dccuchile/bert-base-spanish-wwm-uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - muchocine
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: bert-base-uncased-es-sentiment-analysis
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: muchocine
17
+ type: muchocine
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.792258064516129
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # bert-base-uncased-es-sentiment-analysis
31
+
32
+ This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the muchocine dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.9713
35
+ - Accuracy: 0.7923
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 64
56
+ - eval_batch_size: 64
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 5.0
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.541 | 1.0 | 49 | 0.4618 | 0.7781 |
67
+ | 0.3157 | 2.0 | 98 | 0.4989 | 0.7742 |
68
+ | 0.1294 | 3.0 | 147 | 0.6931 | 0.8 |
69
+ | 0.0541 | 4.0 | 196 | 0.8284 | 0.7935 |
70
+ | 0.0254 | 5.0 | 245 | 0.9713 | 0.7923 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.34.1
76
+ - Pytorch 2.1.0+cu118
77
+ - Datasets 2.14.6
78
+ - Tokenizers 0.14.1