Add README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,75 @@
|
|
1 |
---
|
|
|
2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: es
|
3 |
license: gpl-3.0
|
4 |
+
tags:
|
5 |
+
- PyTorch
|
6 |
+
- Transformers
|
7 |
+
- Token Classification
|
8 |
+
- roberta
|
9 |
+
- roberta-base-bne
|
10 |
+
widget:
|
11 |
+
- text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
|
12 |
+
- text: "El proyecto lo financia el Ministerio de Industria y Competitividad."
|
13 |
+
model-index:
|
14 |
+
- name: roberta-bne-ner-cds
|
15 |
+
results: []
|
16 |
---
|
17 |
+
|
18 |
+
# Introduction
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) for Named-Entity Recognition, in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
You can use this model with Transformers *pipeline* for NER.
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("roberta-bne-ner-cds")
|
30 |
+
model = AutoModelForTokenClassification.from_pretrained("roberta-bne-ner-cds")
|
31 |
+
|
32 |
+
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
|
33 |
+
ner_pipe = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
34 |
+
|
35 |
+
for ent in ner_pipe(example):
|
36 |
+
print(ent)
|
37 |
+
```
|
38 |
+
|
39 |
+
```
|
40 |
+
{'entity_group': 'LOC', 'score': 0.99795026, 'word': ' Sigüeiro', 'start': 22, 'end': 30}
|
41 |
+
{'entity_group': 'LOC', 'score': 0.997823, 'word': ' Camino de Santiago', 'start': 38, 'end': 56}
|
42 |
+
{'entity_group': 'ORG', 'score': 0.98481846, 'word': ' Ministerio de Industria y Competitividad', 'start': 85, 'end': 125}
|
43 |
+
```
|
44 |
+
|
45 |
+
## Model performance
|
46 |
+
|
47 |
+
entity|precision|recall|f1
|
48 |
+
-|-|-|-
|
49 |
+
PER|0.965|0.924|0.944
|
50 |
+
ORG|0.900|0.701|0.788
|
51 |
+
LOC|0.982|0.985|0.983
|
52 |
+
MISC|0.798|0.874|0.834
|
53 |
+
micro avg|0.964|0.968|0.966
|
54 |
+
macro avg|0.911|0.871|0.887
|
55 |
+
weighted avg|0.965|0.968|0.966
|
56 |
+
|
57 |
+
## Training procedure
|
58 |
+
|
59 |
+
### Training hyperparameters
|
60 |
+
|
61 |
+
The following hyperparameters were used during training:
|
62 |
+
- learning_rate: 5e-05
|
63 |
+
- train_batch_size: 32
|
64 |
+
- eval_batch_size: 8
|
65 |
+
- seed: 42
|
66 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
+
- lr_scheduler_type: linear
|
68 |
+
- num_epochs: 3.0
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.25.1
|
73 |
+
- Pytorch 1.13.0+cu117
|
74 |
+
- Datasets 2.7.1
|
75 |
+
- Tokenizers 0.13.2
|