|
from typing import Dict, List, Any |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map="auto") |
|
self.model.generation_config = GenerationConfig.from_pretrained(path) |
|
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
inputs = data.pop('inputs', data) |
|
messages = [{"role": "user", "content": inputs}] |
|
|
|
|
|
input_texts = [message["content"] for message in messages] |
|
input_text = self.tokenizer.eos_token.join(input_texts) |
|
input_ids = self.tokenizer.encode(input_text, return_tensors="pt") |
|
|
|
|
|
outputs = self.model.generate(input_ids.to(self.model.device), max_new_tokens=100) |
|
|
|
|
|
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return [{"result": result}] |