bert-multitask-query-classifiers / multitask_model.py
shahrukhx01's picture
add model files
4e98941
"""
Implementation borrowed from transformers package and extended to support multiple prediction heads:
https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/modeling_bert.py
"""
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import transformers
from transformers import BertTokenizer
from transformers import models
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.bert.modeling_bert import (
BertPreTrainedModel,
BERT_INPUTS_DOCSTRING,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
_CONFIG_FOR_DOC,
BertModel,
)
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings_to_model_forward,
)
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config, **kwargs):
super().__init__(transformers.PretrainedConfig())
self.num_labels = kwargs.get("task_labels_map", {})
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout
if config.classifier_dropout is not None
else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
## add task specific output heads
self.classifier1 = nn.Linear(
config.hidden_size, list(self.num_labels.values())[0]
)
self.classifier2 = nn.Linear(
config.hidden_size, list(self.num_labels.values())[1]
)
self.init_weights()
@add_start_docstrings_to_model_forward(
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
task_name=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = None
if task_name == list(self.num_labels.keys())[0]:
logits = self.classifier1(pooled_output)
elif task_name == list(self.num_labels.keys())[1]:
logits = self.classifier2(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels[task_name] == 1:
self.config.problem_type = "regression"
elif self.num_labels[task_name] > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels[task_name] == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(-1, self.num_labels[task_name]), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)