File size: 3,588 Bytes
5a8cc7a
 
cb0c45e
 
 
 
 
 
 
 
5a8cc7a
663106e
 
 
 
 
f9a3370
663106e
 
 
c71d44b
663106e
f9a3370
663106e
 
 
 
 
 
 
 
 
 
6735202
663106e
 
060bb0d
663106e
 
 
6735202
663106e
 
 
85686e5
663106e
e24e799
060bb0d
663106e
 
85686e5
663106e
e24e799
060bb0d
663106e
 
85686e5
663106e
e24e799
060bb0d
663106e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- vision
- image-segmentation
datasets:
- huggan/cityscapes
widget:
- src: https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/cityscapes.png
  example_title: Cityscapes
---

# OneFormer

OneFormer model trained on the Cityscapes dataset (large-sized version, Dinat backbone). It was introduced in the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jain et al. and first released in [this repository](https://github.com/SHI-Labs/OneFormer).

![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/oneformer_teaser.png)

## Model description

OneFormer is the first multi-task universal image segmentation framework. It needs to be trained only once with a single universal architecture, a single model, and on a single dataset, to outperform existing specialized models across semantic, instance, and panoptic segmentation tasks. OneFormer uses a task token to condition the model on the task in focus, making the architecture task-guided for training, and task-dynamic for inference, all with a single model.

![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/oneformer_architecture.png)

## Intended uses & limitations

You can use this particular checkpoint for semantic, instance and panoptic segmentation. See the [model hub](https://huggingface.co/models?search=oneformer) to look for other fine-tuned versions on a different dataset.

### How to use

Here is how to use this model:

```python
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
from PIL import Image
import requests
url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/resolve/main/cityscapes.png"
image = Image.open(requests.get(url, stream=True).raw)

# Loading a single model for all three tasks
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_cityscapes_dinat_large")
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_cityscapes_dinat_large")

# Semantic Segmentation
semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
semantic_outputs = model(**semantic_inputs)
# pass through image_processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])[0]

# Instance Segmentation
instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
instance_outputs = model(**instance_inputs)
# pass through image_processor for postprocessing
predicted_instance_map = processor.post_process_instance_segmentation(instance_outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]

# Panoptic Segmentation
panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
panoptic_outputs = model(**panoptic_inputs)
# pass through image_processor for postprocessing
predicted_semantic_map = processor.post_process_panoptic_segmentation(panoptic_outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
```

For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).

### Citation

```bibtex
@article{jain2022oneformer,
      title={{OneFormer: One Transformer to Rule Universal Image Segmentation}},
      author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi},
      journal={arXiv}, 
      year={2022}
    }
```