sickcell69 commited on
Commit
c5245e5
1 Parent(s): 7339e67

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 384, "out_features": 128, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:611865f79fb43b24014c8dd2814900f8addc42f74dc266473143b371ea907fba
3
+ size 197280
3_Dropout/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dropout": 0.3}
README.md ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:68874
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: two extracts utilities, steal email. to .pst APT1 and uses MAPIGET,
16
+ GETMAIL emails GETMAIL Outlook from
17
+ sentences:
18
+ - April wild using takes Security the vulnerabilities attack , , 360 the lead new
19
+ in group’s the APT-C-06 2018 (CVE-2018-8174) the Core . 0-day In capturing
20
+ - in have and used scheduled droppers to persistence payloads tasks
21
+ - two extracts utilities, steal email. to .pst APT1 and uses MAPIGET, GETMAIL emails
22
+ GETMAIL Outlook from
23
+ - source_sentence: screen victim's remote has obtain machines. management tool monitoring
24
+ from and to captures ConnectWise SOUTHFIELD the
25
+ sentences:
26
+ - months any last intense evolve over team faster gathering 24 than capabilities
27
+ Operation . the the observed technical of effort During observed we , Iranian
28
+ intelligence rapidly the
29
+ - screen victim's remote has obtain machines. management tool monitoring from and
30
+ to captures ConnectWise SOUTHFIELD the
31
+ - C :\Windows\system32\cmd.exe /C shell whoami /all
32
+ - source_sentence: values database registry passwords from
33
+ sentences:
34
+ - BARIUM , a Chinese state player that also goes by APT17 , Axiom and Deputy Dog
35
+ , was previously linked to the ShadowPad and CCleaner incidents , which were also
36
+ supply-chain attacks that used software updates to sneak onto machines .
37
+ - It makes direct system calls using the “syscall” instruction.
38
+ - values database registry passwords from
39
+ - source_sentence: Bazar can inject code through calling <code>VirtualAllocExNuma</code>.
40
+ sentences:
41
+ - Bazar can inject code through calling <code>VirtualAllocExNuma</code>.
42
+ - input redirected and (cmd.exe) output. a process MCMD launch with can
43
+ - and status</code> uses located determine is System files searches <code>/Library/Preferences/</code>
44
+ enabled. Integrity firewall in XCSSET to Protection configuration
45
+ - source_sentence: to communications. Shark use ability in C2 HTTP
46
+ sentences:
47
+ - altered change adding hashes. four samples apparently a random bytes likely the
48
+ to Patchwork file attempt letters of in
49
+ - malware. to a download of specific execute KONNI used PowerShell 64-bit and
50
+ - to communications. Shark use ability in C2 HTTP
51
+ ---
52
+
53
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
54
+
55
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** Sentence Transformer
61
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
62
+ - **Maximum Sequence Length:** 256 tokens
63
+ - **Output Dimensionality:** 128 tokens
64
+ - **Similarity Function:** Cosine Similarity
65
+ <!-- - **Training Dataset:** Unknown -->
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
72
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
73
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
74
+
75
+ ### Full Model Architecture
76
+
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
80
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
81
+ (2): Dense({'in_features': 384, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
82
+ (3): Dropout(
83
+ (dropout_layer): Dropout(p=0.3, inplace=False)
84
+ )
85
+ )
86
+ ```
87
+
88
+ ## Usage
89
+
90
+ ### Direct Usage (Sentence Transformers)
91
+
92
+ First install the Sentence Transformers library:
93
+
94
+ ```bash
95
+ pip install -U sentence-transformers
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+ ```python
100
+ from sentence_transformers import SentenceTransformer
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SentenceTransformer("sentence_transformers_model_id")
104
+ # Run inference
105
+ sentences = [
106
+ 'to communications. Shark use ability in C2 HTTP',
107
+ 'to communications. Shark use ability in C2 HTTP',
108
+ 'altered change adding hashes. four samples apparently a random bytes likely the to Patchwork file attempt letters of in',
109
+ ]
110
+ embeddings = model.encode(sentences)
111
+ print(embeddings.shape)
112
+ # [3, 128]
113
+
114
+ # Get the similarity scores for the embeddings
115
+ similarities = model.similarity(embeddings, embeddings)
116
+ print(similarities.shape)
117
+ # [3, 3]
118
+ ```
119
+
120
+ <!--
121
+ ### Direct Usage (Transformers)
122
+
123
+ <details><summary>Click to see the direct usage in Transformers</summary>
124
+
125
+ </details>
126
+ -->
127
+
128
+ <!--
129
+ ### Downstream Usage (Sentence Transformers)
130
+
131
+ You can finetune this model on your own dataset.
132
+
133
+ <details><summary>Click to expand</summary>
134
+
135
+ </details>
136
+ -->
137
+
138
+ <!--
139
+ ### Out-of-Scope Use
140
+
141
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
142
+ -->
143
+
144
+ <!--
145
+ ## Bias, Risks and Limitations
146
+
147
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
148
+ -->
149
+
150
+ <!--
151
+ ### Recommendations
152
+
153
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
154
+ -->
155
+
156
+ ## Training Details
157
+
158
+ ### Training Dataset
159
+
160
+ #### Unnamed Dataset
161
+
162
+
163
+ * Size: 68,874 training samples
164
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
165
+ * Approximate statistics based on the first 1000 samples:
166
+ | | sentence_0 | sentence_1 |
167
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
168
+ | type | string | string |
169
+ | details | <ul><li>min: 3 tokens</li><li>mean: 24.91 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 24.91 tokens</li><li>max: 111 tokens</li></ul> |
170
+ * Samples:
171
+ | sentence_0 | sentence_1 |
172
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
173
+ | <code>RDAT can upload a file via HTTP POST response to the C2 split into 102,400-byte portions. RDAT can also download data from the C2 which is split into 81,920-byte portions.</code> | <code>RDAT can upload a file via HTTP POST response to the C2 split into 102,400-byte portions. RDAT can also download data from the C2 which is split into 81,920-byte portions.</code> |
174
+ | <code>The threat actor attempted to compromise critical assets , such as database servers , billing servers , and the active directory .</code> | <code>The threat actor attempted to compromise critical assets , such as database servers , billing servers , and the active directory .</code> |
175
+ | <code>computers leaked in two WannaCry , exploit Windows a any unpatched into turn EternalBlue computers used vulnerabilities to incorporated CVE-2017-0145 ransomware the vulnerable to the the . to victim's the that spreading connected and also capable other itself of network CVE-2017-0144 to worm and known</code> | <code>computers leaked in two WannaCry , exploit Windows a any unpatched into turn EternalBlue computers used vulnerabilities to incorporated CVE-2017-0145 ransomware the vulnerable to the the . to victim's the that spreading connected and also capable other itself of network CVE-2017-0144 to worm and known</code> |
176
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
177
+ ```json
178
+ {
179
+ "scale": 20.0,
180
+ "similarity_fct": "cos_sim"
181
+ }
182
+ ```
183
+
184
+ ### Training Hyperparameters
185
+ #### Non-Default Hyperparameters
186
+
187
+ - `per_device_train_batch_size`: 16
188
+ - `per_device_eval_batch_size`: 16
189
+ - `num_train_epochs`: 5
190
+ - `multi_dataset_batch_sampler`: round_robin
191
+
192
+ #### All Hyperparameters
193
+ <details><summary>Click to expand</summary>
194
+
195
+ - `overwrite_output_dir`: False
196
+ - `do_predict`: False
197
+ - `eval_strategy`: no
198
+ - `prediction_loss_only`: True
199
+ - `per_device_train_batch_size`: 16
200
+ - `per_device_eval_batch_size`: 16
201
+ - `per_gpu_train_batch_size`: None
202
+ - `per_gpu_eval_batch_size`: None
203
+ - `gradient_accumulation_steps`: 1
204
+ - `eval_accumulation_steps`: None
205
+ - `torch_empty_cache_steps`: None
206
+ - `learning_rate`: 5e-05
207
+ - `weight_decay`: 0.0
208
+ - `adam_beta1`: 0.9
209
+ - `adam_beta2`: 0.999
210
+ - `adam_epsilon`: 1e-08
211
+ - `max_grad_norm`: 1
212
+ - `num_train_epochs`: 5
213
+ - `max_steps`: -1
214
+ - `lr_scheduler_type`: linear
215
+ - `lr_scheduler_kwargs`: {}
216
+ - `warmup_ratio`: 0.0
217
+ - `warmup_steps`: 0
218
+ - `log_level`: passive
219
+ - `log_level_replica`: warning
220
+ - `log_on_each_node`: True
221
+ - `logging_nan_inf_filter`: True
222
+ - `save_safetensors`: True
223
+ - `save_on_each_node`: False
224
+ - `save_only_model`: False
225
+ - `restore_callback_states_from_checkpoint`: False
226
+ - `no_cuda`: False
227
+ - `use_cpu`: False
228
+ - `use_mps_device`: False
229
+ - `seed`: 42
230
+ - `data_seed`: None
231
+ - `jit_mode_eval`: False
232
+ - `use_ipex`: False
233
+ - `bf16`: False
234
+ - `fp16`: False
235
+ - `fp16_opt_level`: O1
236
+ - `half_precision_backend`: auto
237
+ - `bf16_full_eval`: False
238
+ - `fp16_full_eval`: False
239
+ - `tf32`: None
240
+ - `local_rank`: 0
241
+ - `ddp_backend`: None
242
+ - `tpu_num_cores`: None
243
+ - `tpu_metrics_debug`: False
244
+ - `debug`: []
245
+ - `dataloader_drop_last`: False
246
+ - `dataloader_num_workers`: 0
247
+ - `dataloader_prefetch_factor`: None
248
+ - `past_index`: -1
249
+ - `disable_tqdm`: False
250
+ - `remove_unused_columns`: True
251
+ - `label_names`: None
252
+ - `load_best_model_at_end`: False
253
+ - `ignore_data_skip`: False
254
+ - `fsdp`: []
255
+ - `fsdp_min_num_params`: 0
256
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
257
+ - `fsdp_transformer_layer_cls_to_wrap`: None
258
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
259
+ - `deepspeed`: None
260
+ - `label_smoothing_factor`: 0.0
261
+ - `optim`: adamw_torch
262
+ - `optim_args`: None
263
+ - `adafactor`: False
264
+ - `group_by_length`: False
265
+ - `length_column_name`: length
266
+ - `ddp_find_unused_parameters`: None
267
+ - `ddp_bucket_cap_mb`: None
268
+ - `ddp_broadcast_buffers`: False
269
+ - `dataloader_pin_memory`: True
270
+ - `dataloader_persistent_workers`: False
271
+ - `skip_memory_metrics`: True
272
+ - `use_legacy_prediction_loop`: False
273
+ - `push_to_hub`: False
274
+ - `resume_from_checkpoint`: None
275
+ - `hub_model_id`: None
276
+ - `hub_strategy`: every_save
277
+ - `hub_private_repo`: False
278
+ - `hub_always_push`: False
279
+ - `gradient_checkpointing`: False
280
+ - `gradient_checkpointing_kwargs`: None
281
+ - `include_inputs_for_metrics`: False
282
+ - `eval_do_concat_batches`: True
283
+ - `fp16_backend`: auto
284
+ - `push_to_hub_model_id`: None
285
+ - `push_to_hub_organization`: None
286
+ - `mp_parameters`:
287
+ - `auto_find_batch_size`: False
288
+ - `full_determinism`: False
289
+ - `torchdynamo`: None
290
+ - `ray_scope`: last
291
+ - `ddp_timeout`: 1800
292
+ - `torch_compile`: False
293
+ - `torch_compile_backend`: None
294
+ - `torch_compile_mode`: None
295
+ - `dispatch_batches`: None
296
+ - `split_batches`: None
297
+ - `include_tokens_per_second`: False
298
+ - `include_num_input_tokens_seen`: False
299
+ - `neftune_noise_alpha`: None
300
+ - `optim_target_modules`: None
301
+ - `batch_eval_metrics`: False
302
+ - `eval_on_start`: False
303
+ - `eval_use_gather_object`: False
304
+ - `batch_sampler`: batch_sampler
305
+ - `multi_dataset_batch_sampler`: round_robin
306
+
307
+ </details>
308
+
309
+ ### Training Logs
310
+ | Epoch | Step | Training Loss |
311
+ |:------:|:-----:|:-------------:|
312
+ | 0.1161 | 500 | 0.0029 |
313
+ | 0.2323 | 1000 | 0.0017 |
314
+ | 0.3484 | 1500 | 0.0015 |
315
+ | 0.4646 | 2000 | 0.0015 |
316
+ | 0.5807 | 2500 | 0.0023 |
317
+ | 0.6969 | 3000 | 0.0016 |
318
+ | 0.8130 | 3500 | 0.0017 |
319
+ | 0.9292 | 4000 | 0.0013 |
320
+ | 1.0453 | 4500 | 0.0011 |
321
+ | 1.1614 | 5000 | 0.001 |
322
+ | 1.2776 | 5500 | 0.0009 |
323
+ | 1.3937 | 6000 | 0.0009 |
324
+ | 1.5099 | 6500 | 0.0012 |
325
+ | 1.6260 | 7000 | 0.0013 |
326
+ | 1.7422 | 7500 | 0.0013 |
327
+ | 1.8583 | 8000 | 0.0013 |
328
+ | 1.9744 | 8500 | 0.0008 |
329
+ | 2.0906 | 9000 | 0.0007 |
330
+ | 2.2067 | 9500 | 0.0007 |
331
+ | 2.3229 | 10000 | 0.0009 |
332
+ | 2.4390 | 10500 | 0.0007 |
333
+ | 2.5552 | 11000 | 0.0011 |
334
+ | 2.6713 | 11500 | 0.0009 |
335
+ | 2.7875 | 12000 | 0.0008 |
336
+ | 2.9036 | 12500 | 0.0006 |
337
+ | 3.0197 | 13000 | 0.0006 |
338
+ | 3.1359 | 13500 | 0.0007 |
339
+ | 3.2520 | 14000 | 0.0006 |
340
+ | 3.3682 | 14500 | 0.0007 |
341
+ | 3.4843 | 15000 | 0.0006 |
342
+ | 3.6005 | 15500 | 0.0013 |
343
+ | 3.7166 | 16000 | 0.0008 |
344
+ | 3.8328 | 16500 | 0.0008 |
345
+ | 3.9489 | 17000 | 0.0006 |
346
+ | 4.0650 | 17500 | 0.0006 |
347
+ | 4.1812 | 18000 | 0.0006 |
348
+ | 4.2973 | 18500 | 0.0005 |
349
+ | 4.4135 | 19000 | 0.0006 |
350
+ | 4.5296 | 19500 | 0.0008 |
351
+ | 4.6458 | 20000 | 0.0006 |
352
+ | 4.7619 | 20500 | 0.0006 |
353
+ | 4.8780 | 21000 | 0.0005 |
354
+ | 4.9942 | 21500 | 0.0005 |
355
+
356
+
357
+ ### Framework Versions
358
+ - Python: 3.11.7
359
+ - Sentence Transformers: 3.0.1
360
+ - Transformers: 4.43.3
361
+ - PyTorch: 2.4.0+cu118
362
+ - Accelerate: 0.33.0
363
+ - Datasets: 2.20.0
364
+ - Tokenizers: 0.19.1
365
+
366
+ ## Citation
367
+
368
+ ### BibTeX
369
+
370
+ #### Sentence Transformers
371
+ ```bibtex
372
+ @inproceedings{reimers-2019-sentence-bert,
373
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
374
+ author = "Reimers, Nils and Gurevych, Iryna",
375
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
376
+ month = "11",
377
+ year = "2019",
378
+ publisher = "Association for Computational Linguistics",
379
+ url = "https://arxiv.org/abs/1908.10084",
380
+ }
381
+ ```
382
+
383
+ #### MultipleNegativesRankingLoss
384
+ ```bibtex
385
+ @misc{henderson2017efficient,
386
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
387
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
388
+ year={2017},
389
+ eprint={1705.00652},
390
+ archivePrefix={arXiv},
391
+ primaryClass={cs.CL}
392
+ }
393
+ ```
394
+
395
+ <!--
396
+ ## Glossary
397
+
398
+ *Clearly define terms in order to be accessible across audiences.*
399
+ -->
400
+
401
+ <!--
402
+ ## Model Card Authors
403
+
404
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
405
+ -->
406
+
407
+ <!--
408
+ ## Model Card Contact
409
+
410
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
411
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.43.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.43.3",
5
+ "pytorch": "2.4.0+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:790ae806f396f666042d9b0e126632f35d97a6f3b9421a5eb4aa1a9bafa63231
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Dropout",
24
+ "type": "sentence_transformers.models.Dropout"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff