--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:100K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may") # Run inference sentences = [ 'Sales', 'Revenue', 'Operating profit', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.9988 | | dot_accuracy | 0.0015 | | manhattan_accuracy | 0.9975 | | euclidean_accuracy | 0.9991 | | **max_accuracy** | **0.9991** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 660,643 training samples * Columns: anchor_label, pos_hlabel, and neg_hlabel * Approximate statistics based on the first 1000 samples: | | anchor_label | pos_hlabel | neg_hlabel | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor_label | pos_hlabel | neg_hlabel | |:---------------------------------------------|:-------------------------------------------|:------------------------------------------------------------------------------| | Basic earnings (loss) per share | Tavakasum kahjum aktsia kohta | II Kapital z nadwyzki wartosci emisyjnej ponad wartosc nominalna | | Comprehensive income | Suma dochodow calkowitych | dont Marques | | Cash and cash equivalents | Cash and cash equivalents | Cars incl prepayments | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 283,133 evaluation samples * Columns: anchor_label, pos_hlabel, and neg_hlabel * Approximate statistics based on the first 1000 samples: | | anchor_label | pos_hlabel | neg_hlabel | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor_label | pos_hlabel | neg_hlabel | |:--------------------------------------------------------------------------------|:-------------------------------------------------------|:-------------------------------------| | Deferred tax assets | Deferred tax assets | Immateriella tillgangar | | Equity | EGET KAPITAL inklusive periodens resultat | Materials | | Adjustments for decrease (increase) in other operating receivables | Okning av ovriga rorelsetillgangar | Rorelseresultat | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | max_accuracy | |:------:|:-----:|:-------------:|:------:|:------------:| | 0.0121 | 500 | 3.7705 | - | - | | 0.0242 | 1000 | 1.4084 | - | - | | 0.0363 | 1500 | 0.7062 | - | - | | 0.0484 | 2000 | 0.5236 | - | - | | 0.0605 | 2500 | 0.4348 | - | - | | 0.0727 | 3000 | 0.3657 | - | - | | 0.0848 | 3500 | 0.3657 | - | - | | 0.0969 | 4000 | 0.2952 | - | - | | 0.1090 | 4500 | 0.3805 | - | - | | 0.1211 | 5000 | 0.3255 | - | - | | 0.1332 | 5500 | 0.2621 | - | - | | 0.1453 | 6000 | 0.2377 | - | - | | 0.1574 | 6500 | 0.2139 | - | - | | 0.1695 | 7000 | 0.2085 | - | - | | 0.1816 | 7500 | 0.1809 | - | - | | 0.1937 | 8000 | 0.1711 | - | - | | 0.2059 | 8500 | 0.1608 | - | - | | 0.2180 | 9000 | 0.1808 | - | - | | 0.2301 | 9500 | 0.1553 | - | - | | 0.2422 | 10000 | 0.1417 | - | - | | 0.2543 | 10500 | 0.1329 | - | - | | 0.2664 | 11000 | 0.1689 | - | - | | 0.2785 | 11500 | 0.1292 | - | - | | 0.2906 | 12000 | 0.1181 | - | - | | 0.3027 | 12500 | 0.1223 | - | - | | 0.3148 | 13000 | 0.129 | - | - | | 0.3269 | 13500 | 0.0911 | - | - | | 0.3391 | 14000 | 0.113 | - | - | | 0.3512 | 14500 | 0.0955 | - | - | | 0.3633 | 15000 | 0.108 | - | - | | 0.3754 | 15500 | 0.094 | - | - | | 0.3875 | 16000 | 0.0947 | - | - | | 0.3996 | 16500 | 0.0748 | - | - | | 0.4117 | 17000 | 0.0699 | - | - | | 0.4238 | 17500 | 0.0707 | - | - | | 0.4359 | 18000 | 0.0768 | - | - | | 0.4480 | 18500 | 0.0805 | - | - | | 0.4601 | 19000 | 0.0705 | - | - | | 0.4723 | 19500 | 0.069 | - | - | | 0.4844 | 20000 | 0.072 | - | - | | 0.4965 | 20500 | 0.0669 | - | - | | 0.5086 | 21000 | 0.066 | - | - | | 0.5207 | 21500 | 0.0624 | - | - | | 0.5328 | 22000 | 0.0687 | - | - | | 0.5449 | 22500 | 0.076 | - | - | | 0.5570 | 23000 | 0.0563 | - | - | | 0.5691 | 23500 | 0.0594 | - | - | | 0.5812 | 24000 | 0.0524 | - | - | | 0.5933 | 24500 | 0.0528 | - | - | | 0.6055 | 25000 | 0.0448 | - | - | | 0.6176 | 25500 | 0.041 | - | - | | 0.6297 | 26000 | 0.0397 | - | - | | 0.6418 | 26500 | 0.0489 | - | - | | 0.6539 | 27000 | 0.0595 | - | - | | 0.6660 | 27500 | 0.034 | - | - | | 0.6781 | 28000 | 0.0569 | - | - | | 0.6902 | 28500 | 0.0467 | - | - | | 0.7023 | 29000 | 0.0323 | - | - | | 0.7144 | 29500 | 0.0428 | - | - | | 0.7266 | 30000 | 0.0344 | - | - | | 0.7387 | 30500 | 0.029 | - | - | | 0.7508 | 31000 | 0.0418 | - | - | | 0.7629 | 31500 | 0.0285 | - | - | | 0.7750 | 32000 | 0.0425 | - | - | | 0.7871 | 32500 | 0.0266 | - | - | | 0.7992 | 33000 | 0.0325 | - | - | | 0.8113 | 33500 | 0.0215 | - | - | | 0.8234 | 34000 | 0.0316 | - | - | | 0.8355 | 34500 | 0.0286 | - | - | | 0.8476 | 35000 | 0.0285 | - | - | | 0.8598 | 35500 | 0.0284 | - | - | | 0.8719 | 36000 | 0.0147 | - | - | | 0.8840 | 36500 | 0.0217 | - | - | | 0.8961 | 37000 | 0.0311 | - | - | | 0.9082 | 37500 | 0.0202 | - | - | | 0.9203 | 38000 | 0.0236 | - | - | | 0.9324 | 38500 | 0.0201 | - | - | | 0.9445 | 39000 | 0.0246 | - | - | | 0.9566 | 39500 | 0.0177 | - | - | | 0.9687 | 40000 | 0.0173 | - | - | | 0.9808 | 40500 | 0.0202 | - | - | | 0.9930 | 41000 | 0.017 | - | - | | 1.0 | 41291 | - | 0.0140 | 0.9991 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.0 - Transformers: 4.39.3 - PyTorch: 2.1.2 - Accelerate: 0.28.0 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```