File size: 3,725 Bytes
63f9fbe 88111a5 63f9fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: apache-2.0
---
The project on GitHub :
https://github.com/reuniware/CryptoForex-Trader-Framework/tree/main/CCXT_ICHIMOKU/julie_scanner
### How to Use `bluewenne8.py`
1. **Install Dependencies**:
Ensure you have the required libraries installed:
```sh
pip install ccxt pandas scikit-learn joblib argparse pytz
```
2. **Script Overview**:
`bluewenne8.py` performs cryptocurrency data analysis, trains a machine learning model, and makes predictions.
### Command-Line Usage
You run the script from the command line with various arguments to control its behavior:
#### 1. **Fetch Data and Analyze Symbols**
This command will fetch data for symbols, analyze the greatest candles, and save the results:
```sh
python bluewenne8.py --timeframe 1d
```
- **`--timeframe`**: Required. Defines the candlestick timeframe, e.g., '1d' for daily candles, '1h' for hourly candles.
#### 2. **Train the Model**
If you want to train a model on historical data, use the following command:
```sh
python bluewenne8.py --timeframe 1d --train
```
- **`--train`**: Optional. If included, the script will train a machine learning model using existing historical data.
#### 3. **Use Existing Model to Make Predictions**
To make predictions using an existing model:
```sh
python bluewenne8.py --timeframe 1d --use-existing
```
- **`--use-existing`**: Optional. If included, the script will use the pre-trained model to make predictions based on existing historical data.
### Detailed Steps for Each Mode
#### A. **Fetch Data and Analyze Symbols**
1. **Fetch Markets**: The script retrieves a list of available markets from the Binance exchange.
2. **Fetch OHLCV Data**: Collects candlestick data for each symbol based on the provided timeframe.
3. **Save Data**: Saves the fetched historical data to CSV files in the `downloaded_history` directory.
4. **Analyze Symbols**: Identifies and logs the greatest candle for each symbol, including current prices.
#### B. **Train the Model**
1. **Load Historical Data**: Reads data from CSV files in the `downloaded_history` directory.
2. **Preprocess Data**: Prepares data by formatting timestamps, setting indices, and splitting features and target variables.
3. **Train Model**: Uses a RandomForestRegressor to train on the historical data.
4. **Save Model**: Saves the trained model and scaler to disk (`model.pkl` and `scaler.pkl`).
#### C. **Use Existing Model to Make Predictions**
1. **Load Model and Data**: Loads the saved model and scaler, and reads historical data.
2. **Predict Next Candle**: Uses the trained model to predict future price movements based on the latest data.
3. **Save Predictions**: Writes predictions to a results file.
### File Structure and Directories
- **`downloaded_history/`**: Directory where historical data CSV files are saved.
- **`scan_results_bluewenne8/`**: Directory where results and prediction files are saved. Created based on the script name.
- **Model Files**: `model.pkl` and `scaler.pkl` are saved in the script's working directory when training.
### Example Use Case
1. **Fetch and Analyze Data**:
```sh
python bluewenne8.py --timeframe 1d
```
This will fetch data for all available USDT pairs, analyze it, and save results.
2. **Train Model**:
```sh
python bluewenne8.py --timeframe 1d --train
```
This will train the model on data from files matching the filter `BTC_USDT`.
3. **Predict with Existing Model**:
```sh
python bluewenne8.py --timeframe 1d --use-existing
```
This uses the pre-trained model to make predictions based on the latest historical data.
Feel free to adjust the timeframe and filters as needed for your specific analysis or training tasks. |