import os import cv2 import numpy as np import torch import tqdm import yaml from omegaconf import OmegaConf from PIL import Image from torch.utils.data._utils.collate import default_collate from saicinpainting.training.trainers import load_checkpoint from saicinpainting.evaluation.utils import move_to_device, load_image, prepare_image, pad_img_to_modulo, scale_image from saicinpainting.evaluation.refinement import refine_predict refiner_config = { 'gpu_ids': '0,', 'modulo': 8, 'n_iters': 15, 'lr': 0.002, 'min_side': 512, 'max_scales': 3, 'px_budget': 1800000 } class Inpainter(): def __init__(self, config): self.model = None self.config = config self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.scale_factor = config['scale_factor'] self.pad_out_to_modulo = config['pad_out_to_modulo'] self.predict_config = config['predict'] self.predict_config['model_path'] = 'big-lama' self.predict_config['model_checkpoint'] = 'best.ckpt' self.refiner_config = refiner_config def load_model_from_checkpoint(self, model_path, checkpoint): train_config_path = os.path.join(model_path, 'config.yaml') with open(train_config_path, 'r') as f: train_config = OmegaConf.create(yaml.safe_load(f)) train_config.training_model.predict_only = True train_config.visualizer.kind = 'noop' checkpoint_path = os.path.join(model_path, 'models', checkpoint) self.model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') def load_batch_data(self, img_, mask_): """Loads the image and mask from the given filenames. """ image = prepare_image(img_, mode='RGB') mask = prepare_image(mask_, mode='L') result = dict(image=image, mask=mask[None, ...]) if self.scale_factor is not None: result['image'] = scale_image(result['image'], self.scale_factor) result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: result['unpad_to_size'] = result['image'].shape[1:] result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) return result def inpaint_img(self, original_img, mask_img, refine=False) -> Image: """ Inpaints the image region defined by the given mask. White pixels are to be masked and black pixels kept. args: refine: if True, uses the refinement model to enhance the inpainting result, at the cost of speed. returns: the inpainted image """ # in case we are given filenames instead of images if isinstance(original_img, str): original_img = load_image(original_img, mode='RGB') mask_img = load_image(mask_img, mode='L') self.model.eval() if not refine: self.model.to(self.device) # load the image and mask batch = default_collate([self.load_batch_data(original_img, mask_img)]) if refine: assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" # image unpadding is taken care of in the refiner, so that output image # is same size as the input image cur_res = refine_predict(batch, self.model, **self.refiner_config) cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() else: with torch.no_grad(): batch = move_to_device(batch, self.device) batch['mask'] = (batch['mask'] > 0) * 1 batch = self.model(batch) cur_res = batch[self.predict_config['out_key']][0].permute(1, 2, 0).detach().cpu().numpy() unpad_to_size = batch.get('unpad_to_size', None) if unpad_to_size is not None: orig_height, orig_width = unpad_to_size cur_res = cur_res[:orig_height, :orig_width] cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') rslt_image = Image.fromarray(cur_res, 'RGB') #cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) return rslt_image