Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
9ad92f4
1
Parent(s):
fa07c02
Update app.py (#2)
Browse files- Update app.py (552ecdb2f129af4928bd10439ea41eec2bb9a52f)
Co-authored-by: Apolinário from multimodal AI art <[email protected]>
app.py
CHANGED
@@ -4,8 +4,9 @@ import gradio as gr
|
|
4 |
from PIL import Image
|
5 |
from diffusers import (
|
6 |
DiffusionPipeline,
|
7 |
-
|
8 |
ControlNetModel,
|
|
|
9 |
DPMSolverMultistepScheduler, # <-- Added import
|
10 |
EulerDiscreteScheduler # <-- Added import
|
11 |
)
|
@@ -13,12 +14,16 @@ from diffusers import (
|
|
13 |
# Initialize both pipelines
|
14 |
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
|
15 |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
16 |
-
main_pipe =
|
17 |
"SG161222/Realistic_Vision_V2.0",
|
18 |
controlnet=controlnet,
|
19 |
safety_checker=None,
|
20 |
torch_dtype=torch.float16,
|
21 |
).to("cuda")
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Sampler map
|
24 |
SAMPLER_MAP = {
|
@@ -26,6 +31,22 @@ SAMPLER_MAP = {
|
|
26 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
27 |
}
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Inference function
|
30 |
def inference(
|
31 |
control_image: Image.Image,
|
@@ -33,49 +54,46 @@ def inference(
|
|
33 |
negative_prompt: str,
|
34 |
guidance_scale: float = 8.0,
|
35 |
controlnet_conditioning_scale: float = 1,
|
36 |
-
strength: float = 0.9,
|
37 |
seed: int = -1,
|
38 |
sampler = "DPM++ Karras SDE",
|
|
|
39 |
):
|
40 |
if prompt is None or prompt == "":
|
41 |
raise gr.Error("Prompt is required")
|
42 |
|
43 |
# Generate the initial image
|
44 |
-
init_image = init_pipe(prompt).images[0]
|
45 |
|
46 |
# Rest of your existing code
|
47 |
-
control_image = control_image
|
48 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
49 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
50 |
|
51 |
out = main_pipe(
|
52 |
prompt=prompt,
|
53 |
negative_prompt=negative_prompt,
|
54 |
-
image=
|
55 |
-
control_image=control_image,
|
56 |
-
guidance_scale=guidance_scale,
|
57 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
58 |
generator=generator,
|
59 |
-
strength=strength,
|
60 |
num_inference_steps=30,
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
with gr.Blocks() as app:
|
65 |
gr.Markdown(
|
66 |
'''
|
67 |
-
<center>
|
68 |
-
|
69 |
-
<span
|
70 |
-
<span style="color:black; font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
|
71 |
-
<span style="color:black; font-size:10px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)</span>
|
72 |
-
|
73 |
</center>
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
Given a prompt, we generate an init image and pass that alongside the control illusion to create a stunning illusion! Credit to : MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)</span>
|
78 |
-
</p>
|
79 |
|
80 |
'''
|
81 |
)
|
@@ -83,13 +101,14 @@ with gr.Blocks() as app:
|
|
83 |
with gr.Row():
|
84 |
with gr.Column():
|
85 |
control_image = gr.Image(label="Input Illusion", type="pil")
|
|
|
|
|
86 |
prompt = gr.Textbox(label="Prompt")
|
87 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
88 |
with gr.Accordion(label="Advanced Options", open=False):
|
89 |
-
|
90 |
-
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
91 |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
92 |
-
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="
|
93 |
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
|
94 |
run_btn = gr.Button("Run")
|
95 |
with gr.Column():
|
@@ -97,11 +116,11 @@ with gr.Blocks() as app:
|
|
97 |
|
98 |
run_btn.click(
|
99 |
inference,
|
100 |
-
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale,
|
101 |
outputs=[result_image]
|
102 |
)
|
103 |
|
104 |
app.queue(max_size=20)
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
-
app.launch(
|
|
|
4 |
from PIL import Image
|
5 |
from diffusers import (
|
6 |
DiffusionPipeline,
|
7 |
+
StableDiffusionControlNetPipeline,
|
8 |
ControlNetModel,
|
9 |
+
StableDiffusionLatentUpscalePipeline,
|
10 |
DPMSolverMultistepScheduler, # <-- Added import
|
11 |
EulerDiscreteScheduler # <-- Added import
|
12 |
)
|
|
|
14 |
# Initialize both pipelines
|
15 |
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
|
16 |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
17 |
+
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
18 |
"SG161222/Realistic_Vision_V2.0",
|
19 |
controlnet=controlnet,
|
20 |
safety_checker=None,
|
21 |
torch_dtype=torch.float16,
|
22 |
).to("cuda")
|
23 |
+
model_id = "stabilityai/sd-x2-latent-upscaler"
|
24 |
+
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
25 |
+
upscaler.to("cuda")
|
26 |
+
|
27 |
|
28 |
# Sampler map
|
29 |
SAMPLER_MAP = {
|
|
|
31 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
32 |
}
|
33 |
|
34 |
+
def center_crop_resize(img, output_size=(512, 512)):
|
35 |
+
width, height = img.size
|
36 |
+
|
37 |
+
# Calculate dimensions to crop to the center
|
38 |
+
new_dimension = min(width, height)
|
39 |
+
left = (width - new_dimension)/2
|
40 |
+
top = (height - new_dimension)/2
|
41 |
+
right = (width + new_dimension)/2
|
42 |
+
bottom = (height + new_dimension)/2
|
43 |
+
|
44 |
+
# Crop and resize
|
45 |
+
img = img.crop((left, top, right, bottom))
|
46 |
+
img = img.resize(output_size)
|
47 |
+
|
48 |
+
return img
|
49 |
+
|
50 |
# Inference function
|
51 |
def inference(
|
52 |
control_image: Image.Image,
|
|
|
54 |
negative_prompt: str,
|
55 |
guidance_scale: float = 8.0,
|
56 |
controlnet_conditioning_scale: float = 1,
|
|
|
57 |
seed: int = -1,
|
58 |
sampler = "DPM++ Karras SDE",
|
59 |
+
progress = gr.Progress(track_tqdm=True)
|
60 |
):
|
61 |
if prompt is None or prompt == "":
|
62 |
raise gr.Error("Prompt is required")
|
63 |
|
64 |
# Generate the initial image
|
65 |
+
#init_image = init_pipe(prompt).images[0]
|
66 |
|
67 |
# Rest of your existing code
|
68 |
+
control_image = center_crop_resize(control_image)
|
69 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
70 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
71 |
|
72 |
out = main_pipe(
|
73 |
prompt=prompt,
|
74 |
negative_prompt=negative_prompt,
|
75 |
+
image=control_image,
|
76 |
+
#control_image=control_image,
|
77 |
+
guidance_scale=float(guidance_scale),
|
78 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
79 |
generator=generator,
|
80 |
+
#strength=strength,
|
81 |
num_inference_steps=30,
|
82 |
+
#output_type="latent"
|
83 |
+
).images[0]
|
84 |
+
|
85 |
+
return out
|
86 |
|
87 |
with gr.Blocks() as app:
|
88 |
gr.Markdown(
|
89 |
'''
|
90 |
+
<center><h1>Illusion Diffusion 🌀</h1></span>
|
91 |
+
<span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
|
92 |
+
<span font-size:10px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)</span>
|
|
|
|
|
|
|
93 |
</center>
|
94 |
|
95 |
+
This project works by using the QR Control Net by Monster Labs: [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
|
96 |
+
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)
|
|
|
|
|
97 |
|
98 |
'''
|
99 |
)
|
|
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
103 |
control_image = gr.Image(label="Input Illusion", type="pil")
|
104 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale")
|
105 |
+
gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image)
|
106 |
prompt = gr.Textbox(label="Prompt")
|
107 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
108 |
with gr.Accordion(label="Advanced Options", open=False):
|
109 |
+
#strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
|
|
110 |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
111 |
+
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
|
112 |
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
|
113 |
run_btn = gr.Button("Run")
|
114 |
with gr.Column():
|
|
|
116 |
|
117 |
run_btn.click(
|
118 |
inference,
|
119 |
+
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler],
|
120 |
outputs=[result_image]
|
121 |
)
|
122 |
|
123 |
app.queue(max_size=20)
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
+
app.launch()
|