import gradio as gr from PIL import Image from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan.utils import RealESRGANer # model load netscale = 4 super_res_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) super_res_upsampler = RealESRGANer(scale=netscale, model_path='model_zoo/RealESRGAN_x4plus.pth', model=super_res_model, tile=0, tile_pad=10, pre_pad=0, half=False, gpu_id=None) fisheye_correction_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) fisheye_correction_upsampler = RealESRGANer(scale=netscale, model_path='model_zoo/RealESRGAN_x4plus_fine_tuned_400k.pth', model=fisheye_correction_model, tile=0, tile_pad=10, pre_pad=0, half=False, gpu_id=None) def predict(radio_btn, input_img): out = None # preprocess input if(input_img is not None): if(radio_btn == 'Super resolution'): upsampler = super_res_upsampler else: upsampler = fisheye_correction_upsampler output, _ = upsampler.enhance(input_img, outscale=4) # convert to pil image out = Image.fromarray(output) return out gr.Interface( fn=predict, inputs=[ gr.Radio(choices=["Super resolution", "Distortion correction"], value="Super resolution", label="Select task:"), gr.inputs.Image() ], outputs=[ gr.inputs.Image() ], title="Real-ESRGAN moon distortion", description="Description of the app", examples=[ ["Super resolution", "render0001.png"], ["Super resolution", "render1546.png"], ["Super resolution", "render1682.png"], ["Distortion correction", "render0001_DC.png"], ["Distortion correction", "render1546_DC.png"], ["Distortion correction", "render1682_DC.png"] ] ).launch()