import gradio as gr from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import spaces import torch model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner").to("cuda").eval() processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner") import re def modify_caption(caption: str) -> str: """ Removes specific prefixes from captions. Args: caption (str): A string containing a caption. Returns: str: The caption with the prefix removed if it was present. """ # Define the prefixes to remove prefix_substrings = [ ('captured from ', ''), ('captured at ', '') ] # Create a regex pattern to match any of the prefixes pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) replacers = {opening: replacer for opening, replacer in prefix_substrings} # Function to replace matched prefix with its corresponding replacement def replace_fn(match): return replacers[match.group(0)] # Apply the regex to the caption return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) # Example usage in your existing function @spaces.GPU def create_captions_rich(image): prompt = "caption en" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) # Modify the caption to remove specific prefixes modified_caption = modify_caption(decoded) return modified_caption css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML("